М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
aviatorm
aviatorm
16.05.2022 01:45 •  Математика

F(x)=x\sqrt{1-x^2} Найти наибольшее значение функции на интервале (0;1)

👇
Ответ:
tsts84
tsts84
16.05.2022

\displaystyle\\f(x)=x\sqrt{1-x^2}\\\\f'(x)=x'\cdot \sqrt{1-x^2}+x\cdot (\sqrt{1-x^2})'=\sqrt{1-x^2}+x\cdot(-2x)\cdot\frac{1}{2\sqrt{1-x^2}}\\\\f'(x)=0:\\\\\\\sqrt{1-x^2}-\frac{2x^2}{2\sqrt{1-x^2}}=0\\\\\\ \sqrt{1-x^2}-\frac{x^2}{\sqrt{1-x^2}}=0\\\\\\\frac{1-2x^2}{\sqrt{1-x^2}}=0\\\\\\ODZ:1-x^20\\\\-x^2-1\\\\x\in(-1;1)\\\\1-2x^2=0\\\\-2x^2=-1\\\\x^2=\frac{1}{2}\\\\x=\pm\sqrt{\frac{1}{2} }=\pm\frac{1}{\sqrt{2}}\\\\

\displaystyle\\-\frac{1}{\sqrt{2}}\notin (0;1)\\\\\\ f\bigg(\frac{1}{\sqrt{2}}\bigg)=\frac{1}{\sqrt{2}}\sqrt{1-\bigg(\frac{1}{\sqrt{2}}\bigg)^2 } =\frac{1}{\sqrt{2}}\sqrt{1-\frac{1}{2 } } =\frac{1}{\sqrt{2}}\sqrt{\frac{1}{2}}=\frac{\sqrt{2}}{2}\cdot \frac{1}{\sqrt{2}}=\\\\\\ =\frac{\sqrt{2}}{2\sqrt{2}}=\frac{1}{2} \\\\\\f_{max\ (0;1)}=\frac{1}{2}

4,8(93 оценок)
Открыть все ответы
Ответ:

ДАНО: y= -0,25*x⁴+*x².


Исследование:

1. Область определения: D(y)= R, X∈(-∞;+∞)


2. Непрерывная. Гладкая. Вертикальных асимптот - нет


3.Поведение на бесконечности. Y(-∞)= -∞, Y(+∞)= -∞.


4. Нули функции, пересечение с осью ОХ. Y(x)=0.


Применим метод подстановки. z=x².    -0,25z² + z= 0


Нули функции: x₁=-2,  x₂ = х₃=0,  x₄ = 2.


5. Интервалы знакопостоянства.


Положительна: Y(x) >=0 - Х∈[-2;2].

Отрицательна: Y<0 - X∈(-∞;-2]∪[2;+∞).

6. Проверка на чётность. Все степени при Х: 4, 2 - чётные.


Функция чётная: Y(-x) = Y(x)


7. Поиск экстремумов по первой производной.  

Y'(x) = -x³ + 2*x = -x*(x² - 2) = 0  

Точки экстремумов: x₅ = -√2, х₆ = 0,  х₇  = √2 (≈1,4)

7. Локальный экстремум: Ymin(0) = 0, Ymax - Y(x₅) = Y(х₇) = 1.  

8. Интервалы монотонности.


Убывает - X∈(-√2;0]∪[√2;+∞), возрастает - X∈(-∞;-√2]∪[0;√2]


9. Поиск перегибов по второй производной.


Y"(x) = -3*x² + 2 = 0,   x = √(2/3) ≈ 0.82 - точки перегиба - . Y"(x)>0  

10. Вогнутая - "ложка" - X∈[-0.82;+0.82],

Выпуклая - "горка" - Х∈(-∞;-0.82]∪[0.82;+∞).


11. Область значений. E(y) = [1;-∞)


12. График функции в приложении.



Дослідити функцію f(x)=x^2-1/4 x^4 на монотонність та екстремуми та побудувати ескіз її графік.
4,6(74 оценок)
Ответ:
arinapretty
arinapretty
16.05.2022

ДАНО: y= -0,25*x⁴+*x².


Исследование:

1. Область определения: D(y)= R, X∈(-∞;+∞)


2. Непрерывная. Гладкая. Вертикальных асимптот - нет


3.Поведение на бесконечности. Y(-∞)= -∞, Y(+∞)= -∞.


4. Нули функции, пересечение с осью ОХ. Y(x)=0.


Применим метод подстановки. z=x².    -0,25z² + z= 0


Нули функции: x₁=-2,  x₂ = х₃=0,  x₄ = 2.


5. Интервалы знакопостоянства.


Положительна: Y(x) >=0 - Х∈[-2;2].

Отрицательна: Y<0 - X∈(-∞;-2]∪[2;+∞).

6. Проверка на чётность. Все степени при Х: 4, 2 - чётные.


Функция чётная: Y(-x) = Y(x)


7. Поиск экстремумов по первой производной.  

Y'(x) = -x³ + 2*x = -x*(x² - 2) = 0  

Точки экстремумов: x₅ = -√2, х₆ = 0,  х₇  = √2 (≈1,4)

7. Локальный экстремум: Ymin(0) = 0, Ymax - Y(x₅) = Y(х₇) = 1.  

8. Интервалы монотонности.


Убывает - X∈(-√2;0]∪[√2;+∞), возрастает - X∈(-∞;-√2]∪[0;√2]


9. Поиск перегибов по второй производной.


Y"(x) = -3*x² + 2 = 0,   x = √(2/3) ≈ 0.82 - точки перегиба - . Y"(x)>0  

10. Вогнутая - "ложка" - X∈[-0.82;+0.82],

Выпуклая - "горка" - Х∈(-∞;-0.82]∪[0.82;+∞).


11. Область значений. E(y) = [1;-∞)


12. График функции в приложении.



Дослідити функцію f(x)=x^2-1/4 x^4 на монотонність та екстремуми та побудувати ескіз її графік.
4,8(96 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ