М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
thienla0
thienla0
14.08.2021 04:12 •  Математика

с заданием, можно рисунок тоже


с заданием, можно рисунок тоже

👇
Ответ:
ddiana004
ddiana004
14.08.2021

ответ: 10 2/3

Пошаговое объяснение:

у=x(4-x)=4x-x^2,  x(4-x)=0,  x=0,  x=4  -это пределы интегрирования

и парабола пройдет  через точки  (0;0),  (4;0)  и вершину  (2;4),

ветви вниз и снизу ограничена  осью  ОХ,  Интеграл  обозначу  (U),

 черта  /,  0 внизу,  4 вверху черты.

S=(U) (4x-x^2)dx=(2x^2-x^3/ 3) / (от 0 до 4) =2*16-64/3-0=32-21 1/3=10 2/3

4,6(38 оценок)
Открыть все ответы
Ответ:
даsha3
даsha3
14.08.2021
Пусть a/(b + c - 3a) = b/(a + c - 3b) = c/(a + b - 3c) = -1/k. Тогда выполняются три равенства
-ka = -3a + b + c
-kb = a - 3b + c
-kc = a + b - 3c

(k - 3)a + b + c = 0
a + (k - 3)b + c = 0
a + b + (k - 3)c = 0

У этой системы должно быть нетривиальное решение, значит, определитель матрицы этой системы равен нулю.
\det\begin{pmatrix}
k-3&1&1\\
1&k-3&1\\
1&1&k-3
\end{pmatrix}=0\\
\det\begin{pmatrix}
k-3&1&1\\
1&k-3&1\\
1&1&k-3
\end{pmatrix}=\det\begin{pmatrix}
k-3&1&1\\
k-2&k-2&2\\
k-1&k-1&k-1
\end{pmatrix}=\\=(k-1)\det\begin{pmatrix}
k-3&1&1\\
k-2&k-2&2\\
1&1&1
\end{pmatrix}=(k-1)\det\begin{pmatrix}
k-4&0&0\\
k-4&k-4&0\\
1&1&1
\end{pmatrix}=\\=-(k-1)(k-4)^2

(k - 1)(k - 4)^2 = 0, откуда k = 1 или k = -4

Если k = 1, то система превращается в такую:
-2a + b + c = 0
a - 2b + c = 0
a + b - 2c = 0
Решив её, получаем a = b = c. В этом случае 3b/a + 3c/a + a/c + b/c = 3 + 3 + 1 + 1 = 8

Если k = 4, система принимает вид
a + b + c = 0
a + b + c = 0
a + b + c = 0
Тогда 3b/a + 3c/a + a/c + b/c = 3(b + c)/a + (a + b)/c = 3 * (-a)/a + (-c)/c = -3 - 1 = -4

Сумма значений 8 + (-4) = 4
4,5(54 оценок)
Ответ:
Nadachansky
Nadachansky
14.08.2021
Пусть a/(b + c - 3a) = b/(a + c - 3b) = c/(a + b - 3c) = -1/k. Тогда выполняются три равенства
-ka = -3a + b + c
-kb = a - 3b + c
-kc = a + b - 3c

(k - 3)a + b + c = 0
a + (k - 3)b + c = 0
a + b + (k - 3)c = 0

У этой системы должно быть нетривиальное решение, значит, определитель матрицы этой системы равен нулю.
\det\begin{pmatrix}
k-3&1&1\\
1&k-3&1\\
1&1&k-3
\end{pmatrix}=0\\
\det\begin{pmatrix}
k-3&1&1\\
1&k-3&1\\
1&1&k-3
\end{pmatrix}=\det\begin{pmatrix}
k-3&1&1\\
k-2&k-2&2\\
k-1&k-1&k-1
\end{pmatrix}=\\=(k-1)\det\begin{pmatrix}
k-3&1&1\\
k-2&k-2&2\\
1&1&1
\end{pmatrix}=(k-1)\det\begin{pmatrix}
k-4&0&0\\
k-4&k-4&0\\
1&1&1
\end{pmatrix}=\\=-(k-1)(k-4)^2

(k - 1)(k - 4)^2 = 0, откуда k = 1 или k = -4

Если k = 1, то система превращается в такую:
-2a + b + c = 0
a - 2b + c = 0
a + b - 2c = 0
Решив её, получаем a = b = c. В этом случае 3b/a + 3c/a + a/c + b/c = 3 + 3 + 1 + 1 = 8

Если k = 4, система принимает вид
a + b + c = 0
a + b + c = 0
a + b + c = 0
Тогда 3b/a + 3c/a + a/c + b/c = 3(b + c)/a + (a + b)/c = 3 * (-a)/a + (-c)/c = -3 - 1 = -4

Сумма значений 8 + (-4) = 4
4,7(24 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ