Предприятие, производящее компьютеры, получает одинаковые комплектующие детали от двух поставщиков. Первый поставляет 30 % всех комплектующих деталей, второй — 70 % деталей. Известно, что качество поставляемых деталей разное, и в продукции первого поставщика вероятность брака равна 0,1, второго — 0,2. Тогда вероятность того, что деталь, выбранная наудачу из всех полученных, будет бракованной, равна
Второе уравнение выразим относительно у:
у = (-1/15)х - (6/15).
2x - 2 =(-1/15)х - (6/15).
2х - (-1/15)х = 2 - (6/15).
(31/15)х = 24/15.
хВ = 24/31 ≈ 0,774194.
уВ = 2x - 2 = 2*(24/31) - 2 = -14/31 ≈ -0,45161.
Находим координаты точки Д как симметричной относительно точки А.
хД = 2хА - хВ = 2*2 - (24/31) = (124 - 24)/31 = 100/31 ≈ 3,225806.
уД = 2уА - уВ = 2*(-3) - (-14/31) = (-186 + 14)/31 = -172/31 ≈ -5,54839.
Теперь можно определить уравнения других сторон параллелограмма.
у(ЕД) = (-1/15)у + в.
Подставим координаты точки Д.
-172/31 = (-1/15)*(100/31) + в.
в = (100/(15*31) - (172/31) = -2480/465 = -16/3 ≈ -5,3333.
Получаем уравнение ЕД: у = (-1/15)х - (16/3).
у(СД) = 2х + в.
Подставим координаты точки Д.
-172/31 = 2*(100/31) + в.
в = (-172/31) - (200/31) = -372/31 = -12.
Получаем уравнение СД: у = 2х - 12.
2) Решение не известно.
3) Решение аналогично заданию 1.