У правильного треугольника все стороны равны, в основании пирамиды лежит квадрат. его площадь равна а²=36/см²/, диагональ квадрата, которая является стороной осевого сечения, равна а√2=6√2, тогда ее половина -проекция бокового ребра на плоскость основания равна 3√2, а высота пирамиды
√((6√2)²-(3√2)²)=√(72-18)=√54=3√6/см/, объем пирамиды равен трети произведения площади основания на высоту пирамиды, т.е.
(1/3)*36*3√6=36√6(см³)
Распределительное свойство умножения — важное правило, полезное в устном счете и при раскрытии скобок.
Распределительное свойство умножения относительно сложения:
Чтобы умножить число на сумму двух чисел, можно это число умножить на каждое слагаемое и полученные результаты сложить.
С букв распределительное свойство умножения относительно сложения записывают так:
а(в+с)=ав+ас
либо так:
(в+с)*а=ав+ас
Распределительное свойство умножения относительно вычитания:
Чтобы умножить число на разность двух чисел, можно умножить это число на уменьшаемое и на вычитаемое, и из первого произведения вычесть второе.
С букв распределительное свойство умножения относительно вычитания записывают так:
а(b-с)=аb-ас
либо так:
(b-с)*а=аb-ас
Распределительное свойство умножения верно и для большего количества чисел. Например, для трех слагаемых распределительное свойство умножения относительно сложения имеет вид:
а(в+с+d)=ab+ac+ad.
Диагональ правильной четырехугольной пирамиды , сторона которой равняется 6 см, равна 6√2 см. Такие же и боковые рёбра L = 6√2 см.
Угол наклона боковых рёбер равен 60 градусов.
Высота сечения Н равна высоте пирамиды.
H = L*sin 60° = 6√2*(√3/2) = 3√6 см.
Площадь основания So = a² = 6² = 36 см².
ответ: V =(1/3)SoH = (1/3)*36*3√6 = 36√6 см³.