Пусть . Тогда: , , возвращаясь к неравенству и сокращая на , получаем: .
Рассмотрим две непрерывные одинаково выпуклые функции. Они могут пересекаться не более чем в одной точке. Действительно, пусть таких точек хотя бы две. Соединим соседние, тогда эта хорда для одной функции располагается над графиком, а для другой — под графиком. Значит, функции разной выпуклости. Следовательно, точек пересечения не более одной.
Легко проверить, что функции, стоящие в обеих частях являются выпуклыми вниз (достаточно дважды продифференцировать или просто раскрыть скобки, разбив функцию на элементарные составляющие).
Графики функции пересекаются в точке , значит, для они больше нигде не пересекаются. Например, при неравенство выполнено, стало быть, оно будет выполнено и для остальных положительных .
А)3\4 и 9\12 Чтобы сравнить эти дроби, надо привести их к общему знаменателю. Домножаем 3\4 на 3 и получаем 9\12. Следовательно, дроби равны. 3\4=9\12 Б)7\5 и 3\2 Чтобы сравнить эти дроби, надо найти их целую часть. Делим числитель на знаменатель и выносим целое число: 1 целая 2\5 и 1 целая 1\2. Теперь приводим их к общему знаменателю: 1 целая 4\10 и 1 целая 5\10. Следовательно, вторая дробь больше первой. 7\5<3\2 В)5\6 и 5\8 в этом случае действуем аналогично первому: находим общий знаменатель. 40\48 и 30\48. Следовательно, первая дробь больше второй. 5\6>5\8
Пусть . Тогда: , , возвращаясь к неравенству и сокращая на , получаем: .
Рассмотрим две непрерывные одинаково выпуклые функции. Они могут пересекаться не более чем в одной точке. Действительно, пусть таких точек хотя бы две. Соединим соседние, тогда эта хорда для одной функции располагается над графиком, а для другой — под графиком. Значит, функции разной выпуклости. Следовательно, точек пересечения не более одной.
Легко проверить, что функции, стоящие в обеих частях являются выпуклыми вниз (достаточно дважды продифференцировать или просто раскрыть скобки, разбив функцию на элементарные составляющие).
Графики функции пересекаются в точке , значит, для они больше нигде не пересекаются. Например, при неравенство выполнено, стало быть, оно будет выполнено и для остальных положительных .