Уравнение имеет один корень, если его дискриминант равен нулю.
дискриминант этого уравнения равен 4-4*(-a²+2a)=4+4а²-8а=
4*(а-1)²
4*(а-1)²=0⇒а=1
Проверим x²-2x-a²+2a=0
х²-2х-1+2=0
(х-1)²=0⇒х=1, корень один, и он положительный.
это как частный случай. если же сгруппировать члены левой части, то x²-2x-a²+2a=0
(x²-a²)-2(х-a)=0; (х-а)(х+а)-2(х-a)=0; (х-а)(х+а-2)=0
х=а, тогда x²-2x-х²+2х=0; получили 0=0, но надо отобрать только те а, которые положительны.
х+а-2=0
х=2-а
2-а>0 a<2
Если а больше двух, то получим отрицательный корень, если равен двум, то нуль.
ответ х=а, при условии, что а>0, х=2-а, если a<2
м - количество поездок на метро
Тогда 3+м - количество поездок на троллейбусе.
30а - потрачено на автобусные поездки.
30(3+м) - потрачено на троллейбусные поездки.
35м - потрачено на поездки на метро.
30а + 30(3+м) + 35 м = 465
30а + 90 + 30м + 35м = 465
30а + 65м = 465 - 90
30а + 65м = 375
6а + 13м = 75
Числа м и а должны быть натуральными, поскольку речь идет о количествах поездок.
6а = 75 - 13м
75 - 13м - должно делится на 6, то есть быть четным и делится на 3.
75 - 13м будет четным только в том случае, если м будет нечетным.
Подбираем:
75 - 13 • 1 = 75 - 13 = 62 не делится на 6.
75 - 13 • 3 = 75 - 39 = 36 - ДЕЛИТСЯ НА 6!
75 - 13 • 5 = 75 - 65 = 10 - не делится на 6.
75 - 13 • 7 = 75 - 91 = -16 - не подходит.
Значит нас устраивает только случай, когда м = 3.
Решаем уравнение:
6а = 75 - 13м
6а = 75 - 13 • 3
6а = 75 - 39
6а = 36
а = 36 : 6
а = 6 поездок на автобусе было.
.
ответ: 6 поездок.