Часть круга, расположенная вне ромба - это два равных сегмента круга, отсекаемых от него ромбом.
Формула площади сегмента круга
S=0,5•R*•[(π•a/180)-sinα, где α - угол сегмента.
Диагонали ромба пересекаются под прямым углом.
Катет прямоугольного треугольника - среднее пропорциональное между гипотенузой и проекцией этого катета на неё.
Из ∆ АОВ диаметр ВО=√АВ•BТ=√12√3•9√3=18 см.
ТM=BM=OM=R=9
Высота прямоугольного треугольника, проведенная из прямого угла - среднее пропорциональное между отрезками, на которые она делит гипотенузу.
ОТ=√AT•BT
AТ=12√3-9√3=3√3
ОТ=√3√3•9√3=9
ОТ=9⇒ОТ= R⇒
∆ТMO-равносторонний,∠ТМО=60° ⇒ смежный ему∠ТМВ=120°
2S=81•[(π•120°/180°)-√3:2], откуда после вычислений получаем 2S=13,5•(4π-3√3) или ≈99,5 см²
3 целых 1 / 8 + 1 целая 3 / 4 ) × Х = 2 целых 1 / 6
( ( 3 * 8 + 1 ) / 8 + ( 1 * 4 + 3 ) / 4 ) * х = ( 2 * 6 + 1 ) / 6
( ( 24 + 1 ) / 8 + ( 4 + 3 ) / 4 ) * х = ( 12 + 1 ) / 6
( 25 / 8 + 7 / 4 ) * х = 13 / 6
( 25 / 8 + 7 * 2 / ( 4 * 2 ) ) * х = 13 / 6
( 25 / 8 + 14 / 8 ) * х = 13 / 6
39 / 8 * х = 13 / 6
39 * х * 6 = 8 * 13
х = 8 * 13 / ( 39 * 6 )
х = 2 * 4 * 13 / ( 13 * 3 * 2 * 3 )
Числитель и знаменатель в дроби сокращаем на 13 и 2, тогда
х =1 * 4 * 1 / ( 1 * 3 * 1 * 3 )
х = 4 / ( 3 * 3 )
х = 4 / 9
ответ: х = 4 /
Последнее, только там должно быть (4;5]