М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
mashauuu6
mashauuu6
31.01.2022 13:23 •  Математика

3. На самом деле, алгоритмом Евклида чаще называют "ускоренную" версию описанного нами ранее алгоритма: на каждом шаге вместо большего из двух чисел записывается меньшее, а вместо меньшего - остаток от деления большего на меньшее. Так продолжается, пока одно из чисел не поделится нацело на другое (то есть, пока остаток не равен нулю). Последний ненулевой остаток является наибольшим общим делителем (НОД) исходных чисел a и b. Пример: пара (16; 6) превращается в (6; 4), потом в (4,2). 4 делится на 2, поэтому НОД(10; 6) = 2. Докажите, что этот алгоритм Евклида работает не хуже, чем предыдущий.

👇
Открыть все ответы
Ответ:
AsyaFilipova
AsyaFilipova
31.01.2022

y'' - 2y' + 5y = e^{2x}

Имеем линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами, общим решением которого является y = y^{*} +\widetilde{y}.

1) y^{*} — общее решение соответствующего линейного однородного дифференциального уравнения:

y'' - 2y' + 5y = 0

Применим метод Эйлера: сделаем замену y = e^{kx}, где k — некоторая постоянная. Тогда y' = ke^{kx}, \ y'' = k^{2}e^{kx}

Получили характеристическое уравнение:

k^{2}e^{kx} - 2ke^{kx} + 5e^{kx} = 0

Разделим обе части уравнения на e^{kx}:

k^{2} - 2k + 5 = 0

D = (-2)^{2} - 4 \cdot 1 \cdot 5 = 4 - 20 = -16

Отрицательный дискриминант означает, что корни данного уравнения будут комплексно-сопряженными:

k_{1,2} = \dfrac{2 \pm \sqrt{-16}}{2 \cdot 1} = \dfrac{2 \pm \sqrt{16} \cdot \sqrt{-1}}{2} = \dfrac{2 \pm 4i}{2} = 1 \pm 2i

Тогда y^{*}_{1} = e^{(1 + 2i)x}, \ y^{*}_{2} = e^{(1 - 2i)x}

Воспользуемся формулой Эйлера: e^{i \varphi} = \cos \varphi + i\sin \varphi

Фундаментальная система решений: y^{*}_{1} = e^{x}\cos 2x, \ y_{2}^{*} = e^{x}\sin 2x — функции линейно независимые, поскольку \dfrac{y_{1}^{*}}{y_{2}^{*}} = \dfrac{e^{x}\cos 2x}{e^{x}\sin 2x} = \text{ctg} \, 2x \neq \text{const}

Общее решение: y^{*} = C_{1}y_{1}^{*} + C_{2}y_{2}^{*} = C_{1}e^{x}\cos 2x + C_{2}e^{x}\sin 2x

2) \widetilde{y} — частное решение линейного неоднородного дифференциального уравнения, которое находится с метода подбора вида частного решения по виду правой части функции f(x).

Здесь f(x) = e^{2x}, причем \alpha = 2 \neq k_{1,2}, поэтому частное решение имеет вид \widetilde{y} = Ae^{2x}, где A — неизвестный коэффициент, который нужно найти.

Тогда \widetilde{y}' = 2Ae^{2x}, \ \widetilde{y}'' = 4Ae^{2x} и \widetilde{y} = Ae^{2x} подставим в исходное ЛНДР и найдем A:

4Ae^{2x} - 2 \cdot 2Ae^{2x} + 5 \cdot Ae^{2x} = e^{2x}

Разделим обе части уравнения на e^{2x}

4A - 4A+ 5A = 1

A = \dfrac{1}{5}

Таким образом, частное решение: \widetilde{y} = \dfrac{1}{5} e^{2x}

Тогда общим решением исходного ЛНДР с постоянными коэффициентами:

y = y^{*} +\widetilde{y} =e^{x}\left(C_{1}\cos 2x + C_{2}\sin 2x + \dfrac{1}{5} e^{x}\right)

ответ: y =e^{x}\left(C_{1}\cos 2x + C_{2}\sin 2x + \dfrac{1}{5} e^{x}\right)

4,4(47 оценок)
Ответ:
yulaha3010oxppqh
yulaha3010oxppqh
31.01.2022

y'' - 2y' + 5y = e^{2x}

Имеем линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами, общим решением которого является y = y^{*} +\widetilde{y}.

1) y^{*} — общее решение соответствующего линейного однородного дифференциального уравнения:

y'' - 2y' + 5y = 0

Применим метод Эйлера: сделаем замену y = e^{kx}, где k — некоторая постоянная. Тогда y' = ke^{kx}, \ y'' = k^{2}e^{kx}

Получили характеристическое уравнение:

k^{2}e^{kx} - 2ke^{kx} + 5e^{kx} = 0

Разделим обе части уравнения на e^{kx}:

k^{2} - 2k + 5 = 0

D = (-2)^{2} - 4 \cdot 1 \cdot 5 = 4 - 20 = -16

Отрицательный дискриминант означает, что корни данного уравнения будут комплексно-сопряженными:

k_{1,2} = \dfrac{2 \pm \sqrt{-16}}{2 \cdot 1} = \dfrac{2 \pm \sqrt{16} \cdot \sqrt{-1}}{2} = \dfrac{2 \pm 4i}{2} = 1 \pm 2i

Тогда y^{*}_{1} = e^{(1 + 2i)x}, \ y^{*}_{2} = e^{(1 - 2i)x}

Воспользуемся формулой Эйлера: e^{i \varphi} = \cos \varphi + i\sin \varphi

Фундаментальная система решений: y^{*}_{1} = e^{x}\cos 2x, \ y_{2}^{*} = e^{x}\sin 2x — функции линейно независимые, поскольку \dfrac{y_{1}^{*}}{y_{2}^{*}} = \dfrac{e^{x}\cos 2x}{e^{x}\sin 2x} = \text{ctg} \, 2x \neq \text{const}

Общее решение: y^{*} = C_{1}y_{1}^{*} + C_{2}y_{2}^{*} = C_{1}e^{x}\cos 2x + C_{2}e^{x}\sin 2x

2) \widetilde{y} — частное решение линейного неоднородного дифференциального уравнения, которое находится с метода подбора вида частного решения по виду правой части функции f(x).

Здесь f(x) = e^{2x}, причем \alpha = 2 \neq k_{1,2}, поэтому частное решение имеет вид \widetilde{y} = Ae^{2x}, где A — неизвестный коэффициент, который нужно найти.

Тогда \widetilde{y}' = 2Ae^{2x}, \ \widetilde{y}'' = 4Ae^{2x} и \widetilde{y} = Ae^{2x} подставим в исходное ЛНДР и найдем A:

4Ae^{2x} - 2 \cdot 2Ae^{2x} + 5 \cdot Ae^{2x} = e^{2x}

Разделим обе части уравнения на e^{2x}

4A - 4A+ 5A = 1

A = \dfrac{1}{5}

Таким образом, частное решение: \widetilde{y} = \dfrac{1}{5} e^{2x}

Тогда общим решением исходного ЛНДР с постоянными коэффициентами:

y = y^{*} +\widetilde{y} =e^{x}\left(C_{1}\cos 2x + C_{2}\sin 2x + \dfrac{1}{5} e^{x}\right)

ответ: y =e^{x}\left(C_{1}\cos 2x + C_{2}\sin 2x + \dfrac{1}{5} e^{x}\right)

4,7(18 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ