сторона, перпендикулярная диагональной стороне равносторонней трапеции b, образует угол α с большим основанием. найти поверхность тела, образованную вращением вокруг большого основания трапеции
При вращении данной трапеции вокруг большего основания получаем два конуса с образующими равными основанием c радиусом , а также цилиндром с тем же самым радиусом основания и высотой .
Язык и могут быть только вторым, третьим или четвертым уроком 6 вариантов расписания, если уроки можно разбивать 1. 1. физкультура 2. язык 2. язык 3. 3. 4. 4. 5. физкультура 5. 1. 1. физкультура 2. 2. 3. язык 3. язык 4. 4. 5. физкультура 5. 1. 1. физкультура 2. 2. 3. 3. 4. язык 4. язык 5. физкультура 5.4 варианта расписания, если уроки разбивать нельзя 1. 1. физкультура 2. язык 2. язык 3. 3. 4. 4. 5. физкультура 5. 1. 1. физкультура 2. 2. 3. 3. 4. язык 4. язык 5. физкультура 5.
Чтобы определить, можно ли записать данную обыкновенную дробь в виде конечной десятичной дроби, необходимо сначала сократить её. потом разложить знаменатель дроби на простые множители. если разложение будет состоять только из степеней цифр 2 и 5, то такую дробь можно записать в виде конечной десятичной дроби. 17/600 – нельзя представить в виде конечной десятичной дроби, так как 600 = 2 ∙ 2 ∙ 2 ∙ 3 ∙ 5 ∙ 5. 2) 14/125 = 0,112, так как 125 = 5 ∙ 5 ∙ 5; 3) 17/200 = 0,085, так как 200 = 2 ∙ 2 ∙ 2 ∙ 5 ∙ 5; 4) 51/105 = 17/35 – нельзя представить в виде конечной десятичной дроби, так как 35 = 5 ∙ 7.
ответ:
Пошаговое объяснение:
Опускаем высоты BL и СR, тогда:
При вращении данной трапеции вокруг большего основания получаем два конуса с образующими равными
основанием c радиусом
, а также цилиндром с тем же самым радиусом основания и высотой
.
Площадь боковой поверхности конуса:
Площадь боковой поверхности цилиндра:
Тогда площадь боковой поверхности всей фигуры: