Главный тезис Л.Н. Толстого, что человек – это дробь: Ч/З, где числитель Ч – это его человеческая сущность, а знаменатель З – то, что он о себе думает. Лев Николаевич акцентирует внимание на том, что, чем больше З, тем меньше дробь. Да, действительно. Из двух дробей с одинаковыми Ч меньше та, у которой З больше. Так, 7/8 > 7/9 >> 7/ 900 . Мы знаем, что при З → ∞ дробь (Ч/З) → 0. Т.е. излишнее, а тем более, маниакальное, самомнение превращает в ничто человеческую личность. И даже большой Ч уже не может ситуацию. Дробь-то ничтожно мала! Но это утверждение великого писателя не так однозначно. Оно дает богатый материал для рассуждений. А жизненные наблюдения подкреплены математикой! Если Ч>З, т.е. человек недооценивает себя, то это неправильно. Неправильная дробь, так говорит нам математика. Робость сделать что-то не то, ощущение, что другие лучше него, мешает человеку и вредят обществу в целом. Ведь человек не может раскрыть свой потенциал и принести человечеству то, что мог бы, если бы верил в себя. Такого человека надо поддержать, повысить его самооценку, чтобы дробь стала приближенной к единице. Правда, при Ч=З дробь тоже неправильная, но зато это адекватная человеческая единица. А что будет, если у человека З = 0? Таких людей не существует. В этом едины и жизнь, и математика. Если человек не думает о себе, значит, он просто не может думать. В психологии есть тесты, где мнение человека о себе и своих сравнивается с мнением окружающих на этот счет. Полученный коэффициент называется уровнем притязаний. Он обратен предложенной Л.Н.Толстым дроби, но его широкое использование еще раз говорит о гениальности писателя, угадавшего методику оценки личности. Да и каждый человек, прочитавший высказывание, хочет, думаю, знать, а какой же дробью он является?
А) Если исходные числа делятся на p, то и (5n - 1) - 5 * (n - 10) также делится на p, так как каждое слагаемое делится на p. Раскроем скобки, приведём подобные слагаемые: (5n - 1) - 5 * (n - 10) = 5n - 1 - 5n + 15 = 14 = 2 * 7 Поскольку 14 должно делиться на p, то вариантов для p немного - только 2 и 7. Если бы p было равно двум, то тогда на 2 должна была бы делиться и сумма (5n - 1) + (n - 10) = 6n - 11, что невозможно - понятно, что это число нечетное. Итак, p = 7.
б) n - 10 делится на 7, тогда и (n - 10) + 7 = n - 3 также делится на 7, что и требовалось.
ответ: 2(a-2)(a+2)=2(a^2-4)=2a^2-8
Вроде так. ^2- это степень
Пошаговое объяснение: