В начале решения находим точки пересечения линий, они дадут пределы интегрирования. Решим уравнение х² + 1 = х + 3. х² - х -2 = 0, х = 2 или х = -1. Это абсциссы точек пересечения. Считаем координаты точек.(-1;2) и (2;5). Для нахождения площади фигуры,ограниченной линиями находим площадь трапеции, ее основания 2 и 5, а высота 3. S = (2+5)/2*3 =10,5. Найдем площадь фигуры под параболой . Интеграл от -1 до 2 от (х²+1)dx = (1/3х³ + х) подстановка от-1 до 2 = (1/3 *2³ +2) - (1/3 *(-1)³-1) = 6. Теперь от всей трапеции отнимем часть под параболой 10,5 -6 =4,5.
(5 2/9у+3 1/3) *3 -7 2/3у-переводим все числа в неправильную дробь, получаем(47/9у(сорок семь девятых у) + 10/3 десять третьих) *3 -23/3у двадцать три третьих у, далее я пишу тебе решение (47/9у*3 +10/3*3) -23/3у=( 47 у*3/9+ 10*3/3) -23/3у, в числителе и знаменателе сокращаем на 3, получаем, (47у/3 +10) - 23/3у, раскрываем скобки и вычитаем у, получаем 47у/3-23/3 у +10 =24у/3 +10, теперь вместо у- подставляем 3 1/8 превращаем 3 1/8 в неправильную дробь=25/8, у нас получился пример:24/3*25/8+10, числитель 24 и знаменатель 8 сокращеем на 8, в первой дроби получится 3/3 во второй 25/1+10, первую дробь сокращаем=1*25 +10=35 ответ 35
(0 ; 1)
Пошаговое объяснение:
Решение на фото.