Поскольку при выкладывании по 8 и по 9 плиток в ряд прямоугольников не получается, а остаются неполные ряды, то количество плиток делится на 8 и на 9 с остатками.
Остаток от деления любого числа на 8 не может быть больше 7. По условию это число на 6 больше, чем остаток от деления на 9. Но остаток от деления на 9 тоже не равен нулю. Значит, остаток от деления на 8 может быть равен только 7. А остаток от деления на 9 равен 1.
Общее количество плиток меньше 100, иначе их хватило бы на квадратную площадку со стороной в 10 плиток. Среди чисел меньше 100 надо найти такое, которое делится на 8 с остатком 7 и на 9 с остатком 1. Проверив все числа в пределах 100, делящиеся на 9 с остатком 1, получим ответ: 55 плиток.
Пошаговое объяснение:
3/9=1/3
28/35=4/5
75/125=3/5
16/18=8/9
10/14=5/7
98/196=1/2
2. 0,45=9/20, 0,26=13/50, 0,375=3/8
3. прямой угол = 90С
45/90=1/2
18/90=1/5
65/90=13/18
4.
11/35+16/35-13/35=14/35=2/5
2 3/14 + 3 5/14 - 1 1/14=4 7/14 = 4 1/2
5.
12*10/15*3=150/45=2 2/3
42*11*34/17*21*33=15708/11781=1 1/3
6.
13*5+13*9/21*26=13*(5+9) / 21*26=182/546=1/3
8*17-17*4/51/16=17*(8-4) / 51*6=68/816=1/12
7.
в уравнении наверное + 3 1/21? Тогда:
8 10/21 - х= 2 2/21 + 3 1/21
8 10/21 - х = 5 3/21
х = 8 10/21 - 5 3/21
х = 3 7/21
8 10/21 - 3 7/21 = 2 2/21 + 3 1/21
5 3/21 = 5 3/21
ответ: х= 3 3/21