20 3) 843 40 г; 40; Первое летописное упоминание о Москве встречается в Ипатьев- ской летописи в 1147 г. Сколько лет от первого летописно- го упоминания Москвы?
Заметим, что если из каждой цифры наших чисел вычесть 1, то у нас получатся подряд идущие числа в шестеричной записи :
доказательство этого:
наши числа состоят из цифр от 1 до 6
1111111
11111111111112
11111111111112...
11111111111112...1111116
11111111111112...11111161111121
11111111111112...11111161111121если мы каждую цифру уменьшим на 1, то получим:
11111111111112...11111161111121если мы каждую цифру уменьшим на 1, то получим:0000000
11111111111112...11111161111121если мы каждую цифру уменьшим на 1, то получим:00000000000001
11111111111112...11111161111121если мы каждую цифру уменьшим на 1, то получим:00000000000001...
11111111111112...11111161111121если мы каждую цифру уменьшим на 1, то получим:00000000000001...0000005
11111111111112...11111161111121если мы каждую цифру уменьшим на 1, то получим:00000000000001...00000050000010
11111111111112...11111161111121если мы каждую цифру уменьшим на 1, то получим:00000000000001...00000050000010и мы видим, что n-ое число соответствует записи числа (n-1) в шестеричной системе счисления, дополненной вначале нулями до 7 цифр
Пользуясь переводом из 10-системы в 6-стстему (смотри прикрепленное изображение заметим, что
12379 (10)= 133151 (6)
—›Таким будет 12379-е число в шестеричной записи, так как мы считаем с 0. Не забудем прибавить единицу, так как мы отнимаем ее из каждого разряда.
Для записи однозначных чисел понадобится 9 цифр, так как таких чисел 9 и для записи каждого нужна одна цифра: Для записи двузначных чисел понадоюится 180 цифр, так как таких чисел 90, а для записи каждого нужно две цифры: Итого к этому моменту записано 9+180=189 цифр. Далее можно рассмотреть непосредственно запись: 190, 191, 192 цифры - число "100" 193, 194, 195 цифры - число "101" 196, 197, 198 цифры - число "102" 199, 200, 201 цифры - число "103" Как видно двухсотой цифрой вляется цифра 0 из числа "103". ответ: 0
244262
Пошаговое объяснение:
Заметим, что если из каждой цифры наших чисел вычесть 1, то у нас получатся подряд идущие числа в шестеричной записи :
доказательство этого:
наши числа состоят из цифр от 1 до 6
1111111
11111111111112
11111111111112...
11111111111112...1111116
11111111111112...11111161111121
11111111111112...11111161111121если мы каждую цифру уменьшим на 1, то получим:
11111111111112...11111161111121если мы каждую цифру уменьшим на 1, то получим:0000000
11111111111112...11111161111121если мы каждую цифру уменьшим на 1, то получим:00000000000001
11111111111112...11111161111121если мы каждую цифру уменьшим на 1, то получим:00000000000001...
11111111111112...11111161111121если мы каждую цифру уменьшим на 1, то получим:00000000000001...0000005
11111111111112...11111161111121если мы каждую цифру уменьшим на 1, то получим:00000000000001...00000050000010
11111111111112...11111161111121если мы каждую цифру уменьшим на 1, то получим:00000000000001...00000050000010и мы видим, что n-ое число соответствует записи числа (n-1) в шестеричной системе счисления, дополненной вначале нулями до 7 цифр
Пользуясь переводом из 10-системы в 6-стстему (смотри прикрепленное изображение заметим, что
12379 (10)= 133151 (6)
—›Таким будет 12379-е число в шестеричной записи, так как мы считаем с 0. Не забудем прибавить единицу, так как мы отнимаем ее из каждого разряда.
то есть получаем число 244262