Для решения данной задачи мы можем использовать метод работы с долями. Для начала, давайте определим сколько работы может сделать каждая бригада за один день.
1) Если первая бригада справляется с работой за 5 дней, то они выполняют 1/5 работы в день.
2) Вторая бригада, которая работает 1 1/4 более быстро, будет выполнять работу за меньшее количество дней. Чтобы найти это количество, мы можем использовать следующую формулу:
количество дней работы = 1 / доля работы за один день.
Таким образом, количество дней работы второй бригады составляет: 1 / (1 1/4) = 4/5.
Теперь, когда у нас есть это информация, давайте посмотрим сколько работы может выполнить каждая бригада, если они объединятся.
Объединенная работа равна сумме работ, выполняемых каждой бригадой за один день.
Объединенная работа = 1/5 + 4/5 = 5/5 = 1.
Это означает, что объединенная бригада может выполнить всю работу за один день.
Таким образом, если они объединятся, то они закончат работу за 1 день.
Для решения этой задачи нам потребуется использовать формулу расстояния, скорости и времени. Формула имеет вид:
Расстояние = Скорость x Время
По условию задачи, первый поезд едет со скоростью 80 км/ч на протяжении 4 часов, поэтому расстояние, которое он проходит, можно посчитать по формуле:
Расстояние1 = Скорость1 x Время1 = 80 км/ч x 4 ч = 320 км
Второй поезд движется вдогонку первого и его скорость равна 110 км/ч. Также прошло 4 часа с момента выезда поездов. Расстояние, которое прошел второй поезд, можно посчитать по формуле:
Расстояние2 = Скорость2 x Время2 = 110 км/ч x 4 ч = 440 км
Теперь, чтобы найти расстояние между пунктами a и b, нужно сложить прошедшие расстояния первого и второго поезда:
Расстояние между a и b = Расстояние1 + Расстояние2 = 320 км + 440 км = 760 км
Таким образом, расстояние между пунктами a и b составляет 760 км.
1) Если первая бригада справляется с работой за 5 дней, то они выполняют 1/5 работы в день.
2) Вторая бригада, которая работает 1 1/4 более быстро, будет выполнять работу за меньшее количество дней. Чтобы найти это количество, мы можем использовать следующую формулу:
количество дней работы = 1 / доля работы за один день.
Таким образом, количество дней работы второй бригады составляет: 1 / (1 1/4) = 4/5.
Теперь, когда у нас есть это информация, давайте посмотрим сколько работы может выполнить каждая бригада, если они объединятся.
Объединенная работа равна сумме работ, выполняемых каждой бригадой за один день.
Объединенная работа = 1/5 + 4/5 = 5/5 = 1.
Это означает, что объединенная бригада может выполнить всю работу за один день.
Таким образом, если они объединятся, то они закончат работу за 1 день.