Пусть расстояние от В до точки встречи S км/ч. Скорость первого велосипедиста Х км/ч, скорость второго Х-5 км/ч. Тогда первый за 1 час 20 минут (4/3 часа) проехал расстояние (18+S) км: (18+S) / x = 4/3 отсюда Х = 3 * (18+S) / 4 За это же время (4/3 часа) второй велосипедист проехал Расстояние 18-S км: (18-S) / (х-5) = 4/3 (18+S) / x = (18-S) / (х-5) (18+S) (x-5) = (18-S) x 18x - 90 + Sx - 5S = 18x - Sx 2Sx - 5S - 90 = 0 подставляем x,выраженное через S (Х = 3 * (18+S) / 4) 2S * 3 (18+S) / 4 - 5S - 90 = 0 1.5 S (18+S) - 5S - 90 = 0 1.5 S^2 + 27S - 5S - 90 = 0 1.5S^2 + 22S - 90 = 0 D = 22^2 + 4*1.5 * 90 = 484 + 540 = 1024 = 32^2 S1 = (-22 - 32)/3 <0 S2 = (-22+32)/3 = 10/3 = 3 1/3 ответ: на расстоянии 3_1/3 км. Проверка: первый за 4/3 часа проехал 18+10/3 = 64/3 км. Его скорость 64/3 / (4/3) = 16 км/ч. Скорость второго 16-5=11 км/ч. За 4/3 часа он проехал 11 * (4/3) = 44/3 км (считая от пункта А). 18 - 44/3 = 10/3 км от пункта В
ответ:ето
Пошаговое объяснение:
Примеры
Система линейных уравнений с двумя неизвестными
x + y = 5
2x - 3y = 1
Система линейных ур-ний с тремя неизвестными
2*x = 2
5*y = 10
x + y + z = 3
Система дробно-рациональных уравнений
x + y = 3
1/x + 1/y = 2/5
Система четырёх уравнений
x1 + 2x2 + 3x3 - 2x4 = 1
2x1 - x2 - 2x3 - 3x4 = 2
3x1 + 2x2 - x3 + 2x4 = -5
2x1 - 3x2 + 2x3 + x4 = 11
Система линейных уравнений с четырьмя неизвестными
2x + 4y + 6z + 8v = 100
3x + 5y + 7z + 9v = 116
3x - 5y + 7z - 9v = -40
-2x + 4y - 6z + 8v = 36