Нужно помнить некоторые свойства параллелограмма:
1) противолежащие стороны параллелограмма равны и параллельны
2) углы прилегающие к любой стороне параллелограмма в сумме дают 180° (если это не прямоугольник, то два прилегающих угла не равные) в общем можно запомнить, верно для всех случаев: если взяты два разных угла параллелограмма, то их сумма равна 180°
3) противолежащие углы параллелограмма равны,
4) каждая диагональ делит параллелограмм на два равных треугольника
5) диагонали пунктом пересечения делятся пополам
теперь твой пример:
в параллелограмме есть две пары равных углов (по свойству которое у меня под №3)
значит если нам сказано "разность двух из них равна 70°" , то взяты два неравных угла один с первой пары, а второй с другой
дальше составляем уравнение:
обозначаем один угол х
второй будет х + 70
по свойству (которое у меня под №2) будет верным равенство:
х + х + 70 = 180
2х + 70 = 180
2х = 180 - 70
х = 55
х = 55° - это первый угол, противолежащий ему тоже будет равен 55°
х + 70 = 125° - это второй угол , противолежащий ему будет равен 125°
Углы параллелограмма: 55°, 55°, 125°, 125°
ответ: 45 (лично мое решение, которое я писала)
Пошаговое объяснение: пронумеруем школьников. 1- самый низкий 6- самый высокий.
Заметим, что во втором ряду обязательно стоит 6 школьник и обязательно не стоит первый школьник (иначе возникнет противоречие, так как нет школьника выше шестого и нет школьника ниже первого)
Рассмотрим варианты, кто может стоять во втором ряду
654, 653, 652, 643, 642.
если во втором ряду стоят 6, 5 и 4, то всего расставить школьников 3!•3=18
если во втором ряду стоят 6,5,3 то кол-во сп-ов = 2•2•1•3= 12
если во втором ряду 6,5,2 то кол-во сп-ов= 1•2•1•3=6
если 6,4,3 то = 2•1•1•3=6
если 6,4,2 то = 1•1•3=3
в итоге так как нам нужно выбрать разные варианты расстановки учеников то есть или одно или другое, то применяем правило сложения.
18+12+6+6+3=45