1.
2,8 * (-3,9) - 76,15 : 15,23 = -15,92
1) 2,8 * (-3,9) = -10,92
2) 76,15 : 15,23 = 5
3) -10,92 - 5 = -15,92
ответ: -15,92
2.
34,68 : (7,11 + 1,56) + 46 : (2,45 - 1,65) = 61,5
1) 7,11 + 1,56 = 8,67
2) 34,68 : 8,67 = 4
3) 2,45 - 1,65 = 0,8
4) 46 : 0,8 = 57,5
5) 4 + 57,5 = 61,5
ответ: 61,5
3.
(0,62 + 0,56 - 2,29) * (8,44 - 5,34) = -3,441
1) 0,62 + 0,56 = 1,18
2) 1,18 - 2,29 = -1,11
3) 8,44 - 5,34 = 3,1
4) -1,11 * 3,1 = -3,441
ответ: -3,441
4.
62,93 + (12,5 - 7,6 + 3,21) : 0,1 = 144,03
1) 12,5 - 7,6 = 4,9
2) 4,9 + 3,21 = 8,11
3) 8,11 : 0,1 = 81,1
4) 62,93 + 81,1 = 144,03
ответ: 144,03
1)
sin(x)*sin(3x)
так как
sin (3x)= sin(2x + x) = sin(2x) cos(x) + sin(x)cos(2x), то
sin(x)*sin(3x)=sin(x)*[ sin(2x) cos(x) + sin(x)cos(2x)]=
=sin(x)*[2sin(x)cos(x)*cos(x)+sin(x)*(2cos^2(x)-1)]=
=sin^2(x)*[2cos^2(x)+2cos^2(x)-1]=sin^2(x)*[4cos^2(x)-1]=
=4sin^2(x)cos^2(x)-sin^2(x)
a. int(4sin^2(x)cos^2(x))dx=int(2sin(x)cos(x))^2dx=int(sin(2x)^2dx=
=int((1/2)*(1-cos(2*2x)))dx=(1/2)*(x-(1/4)*sin(4x))+c
б. int(sin^2(x))dx=(-1/2)int(1-cos(2x))dx=(-1/2)*[x-(1/2)sin(2x))]+c
итого
int sin(x)*sin(3x)dx=(1/2)*[x-(1/4)*sin(4x)]+c1+(-1/2)*[x-(1/2)sin(2x)]+c2=
=(1/2)*[(1/2)sin(2x)-(1/4)sin(4x)]+c
v×t=s
s:v=t
s:t=v
это формула нахождения времени, пути, и скорости.