Жила-была обыкновенная дробь. Обыкновенная, как и любая, состоящая из числителя и знаменателя, разделённых чёрточкой. Она была довольно симпатичной, но вот только ей так хотелось быть похожей на десятичную! Особенно ей нравились бесконечные десятичные дроби: ведь это так замечательно и заманчиво – уноситься вдаль, в даль, которой нет конца! Сколько там интересного можно повидать. Но обыкновенная дробь продолжала оставаться обыкновенной. А ещё ей было обидно, что её называют обыкновенной. Разве она обыкновенная? Она необыкновенная! Так удивительно – ни у каких чисел больше нет числителя и знаменателя, а у неё есть. Но всё же ей так хотелось иногда стать бесконечной десятичной дробью. И вот однажды… Однажды кто-то придумал числитель разделить на знаменатель. И, оказывается, так просто обыкновенная дробь может стать десятичной! А наша дробь как раз оказалась бесконечной! И понеслась она далеко-далеко, в далёкие края!
x=1 y=1
Пошаговое объяснение:
Домножим первое уравнение на 6, второе на 17
18x+6*17y=120
68x-6*17y=-34
Сложим уравнения
18x+6*17y+68x-6*17y=120-34
Приведем подобные
86x=86
Делим на 86
x=1
Подставим x в любое из уравнений, допустим в первое
3*1+17у=20
Решаем простейшее линейное уравнение
17y =17
y=1