Пошаговое объяснение:
Различают следующие виды случайных событий: достоверные, невозможные и случайные. События обозначаются большими латинскими буквами А, В, С,...,Z. Достоверное событие всегда происходит в результате наблюдения или испытания. Достоверное событие обозначается символом – W.
Невозможное событие никогда не происходит в результате наблюдения или испытания. Невозможное событие обозначается символом – Æ.
Пример. Если в корзине только персики, то достать из корзины персик является достоверным событием, а достать лимон является невозможным событием.
Случайное событие – это такое событие, которое в результате наблюдения или испытания может произойти, а может и не произойти.
Пример. Студент сдаёт экзамен. Экзамен сдан. Это событие случайное, так как студент мог и не сдать экзамен.
Кроме того, события могут быть совместными и несовместными, зависимыми или независимыми. Два события называются совместными, если появление одного из них не исключает появления другого в одном и том же испытании. Примеры совместных событий: два стрелка стреляют по мишени, два спортсмена одновременно бегут. Случайные события А и В называются несовместными, если при данном испытании появление одного из них исключает появление другого события. Несовместные события: день и ночь, студент одновременно едет на занятие и сдаёт экзамен, число иррациональное и чётное.
Событие А называется независимым от события В, если вероятность появления события А не зависит от того произошло событие В или нет. Пример. Два студента одновременно сдают экзамен независимо друг от друга. Это событие совместное и независимое. Событие А называется зависимым от события В, если вероятность появления события А зависит от того произошло или не произошло событие В. Пример. Работник получит оплату труда в зависимости от качества её выполнения.
Равновозможные события – это такие события, которые имеют одинаковые возможности для их появления. Полная группа событий – это совокупность единственно возможных событий при данном испытании. Пример. Студент может сдать экзамен на любую оценку. В данном случае возможны следующие события: студент может сдать экзамен на 5, студент может сдать экзамен на 4, студент может сдать экзамен на 3. Эти события образуют полную группу.
Противоположные события. Два случайные события А и В называются противоположными, если они несовместны и образуют полную группу событий. Примеры: студент может сдать или не сдать экзамен, день и ночь.
Конкретный результат испытания называется элементарным событием. Совокупность всех возможных, различных, конкретных исходов испытаний называется множеством элементарных событий.
Сложным событием (исходом) называется произвольное подмножество множества элементарных событий. Сложное событие в результате испытания наступает тогда и только тогда, когда в результате испытаний произошло элементарное событие, принадлежащее сложному. Например, испытание – подбрасывание кубика. Элементарное событие – выпадение грани с числом «5». Сложное событие – выпадение грани с нечётным числом.
а) Пусть х -число трёхколёсных велосипедов, тогда число двухколёсных 60-х. Колёс у велосипедов: трёхколёсных - 3х, двухколёсных 2(60-х), всего - 3х+2(60-х) или 146. Составим и решим уравнение:
3х+2(60-х)=146
3х+120-2х=146
х=146-120
х=26 - трёхколёсных
60-х=60-26=34 - двухколёсных
ответ: магазин продал 26 трёхколёсных и 34 двухколёсных велосипедов.
б) Пусть х -число двухколёсных велосипедов, тогда число трёхколёсных 60-х. Колёс у велосипедов: двухколёсных - 2х, трёхколёсных 3(60-х), всего - 2х+3(60-х) или 146. Составим и решим уравнение:
2х+3(60-х)=146
2х+180-3х=146
180-146=х
х=34 - двухколёсных
60-х=60-34=26 - трёхколёсных
ответ: магазин продал 26 трёхколёсных и 34 двухколёсных велосипедов.
Отметь как лучшее))
...
Пошаговое объяснение:
а) 245+35-18=280-18=262
б) (87+35):25=122:25=4,88
в) 10260:36+164=285+164=449
г) 52998:(37+29)=52998:66=803