Рисунок прикреплен.
Дано: конус, ВС=12 см, ∠НСВ=30°
Найти: объем конуса
Решение: по условию образующая конуса наклонена к плоскости под углом в 30°. Это значит, что угол между образующей и радиусом основания конуса 30°.
Из вершины конуса опустим высоту. Обозначим её ВН.
ΔВНС прямоугольный.
У него известна гипотенуза ВС=12 и ∠НСВ=30°.
В прямоугольном треугольнике катет, лежащий напротив угла в 30° в два раза меньше гипотенузы.
По теореме Пифагора найдем второй катет ΔВНС. Он же является радиусом основания конуса.
Объем конуса вычисляется по формуле: , где R - радиус основания, h - высота конуса.
ответ: 216π см³
1. (9 + а) +11=20+а;
2. (16 + b) + 4=20+b;
3. (a +17) + 23=a+40;
4. (b +22) + 18=40+b;
5. (18 + х) + 12=30+x;
6) (43 + y) + 57=100+у.