1) Пусть это верно. Тогда рыцари всегда говорят да, а лжецы - нет.
Значит надо найти максимальное количество рыцарей при верном условии.
Тогда лжецов минимальное количество. Найменьшее количество лжецов будет тогда, когда в четырех шеренгах лжецов 3, а в остальных шеренгах лжецов нет.
Тогда рыцарей 4*2+2*5=18
2) Псть это неверно. Тогда рыцари говорят нет, а лжецы говорят да. Значит надо найти максимальное количество ожецыв при неверном условии. Максимально их будет тогда, когда в трех шеренгах все - лжецы, а остальных шеренгах лжецов 2. Тогда их общее количество равно 3*5+3*2=21
21>18
ответ: 21
"Опасные" точки сразу видны, это:
1)
2)
Эта числовая последовательность может быть сведена ко второму замечательному пределу для нахождения пределов:
Выделяем целую часть в дроби:
Используем свойство 2-го замечательного предела, но добавляем степени:
То есть мы степень не меняли: домножили и разделили.
Посчитаем, что получилось:
Итак:
1)
2)
3)
4)
По правило Лопиталя имеем: 0 (не расписывал, поскольку это очень много и неважно в данном случае, нас это не интересует).
Мы видим, что при стремлении к бесконечности с разными знаками, мы имеем конечное число. В "опасных" точках, скачков нет.
Используя свойства показательной функции, находим, что график делает скачок в некотором интервале (основание должно быть неотрицательным числом, если же взять число из интервала
Можно говорить, что данная числовая последовательность является неограниченной (из-за этого интервала).
Если же этого не учитывать, то данная числовая последовательность является ограниченной (это очень грубо).