М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ПитерДина
ПитерДина
10.05.2021 05:56 •  Математика

Задание 3. В треугольнике ABC известны длины сторон: AB = 13, BC = 14 и AC = 15. Выберите верное утверждение. 1) Одна из высот треугольника равна 12. 2) Одна из высот треугольника равна 16. 3) Ни одна высота этого треугольника не имеет целочисленной длины.

👇
Ответ:
provotorov2001
provotorov2001
10.05.2021

3) Ни одна высота этого треугольника не имеет целочисленной длины.

Пошаговое объяснение:

Сам только что решил и перепроверил.

4,7(57 оценок)
Открыть все ответы
Ответ:
araratpashayan5
araratpashayan5
10.05.2021

Формулы приведения работают так: надо определить, какой будет знак (если угол a в первой четверти), поставить его, а потом поменять название на кофункцию, если прибавляется или вычитается нечетное число π/2 (или 90°), и оставить название, если целое число π (180°).

1) Если повернуть угол α на π/2, получится угол II четверти, в ней синус положителен. Прибавляли π/2, sin меняем на cos.

sin(π/2 + α) = cos α

2) Прибавление 2π — поворот на полный круг, получаем угол -α из IV четверти. в ней косинус положителен. Поворот на целое число π, не меняем название функции.

cos(π - α) = cos α

3) угол из IV четверти, ctg < 0, название не меняется

ctg(360° - α) = -ctg α

4) III четверть, cos < 0, название меняется

cos(3π/2 + α) = -sin α

5) Прибавлние полного оборота ничего не меняет.

sin(2π + α) = sin α

4,5(48 оценок)
Ответ:
Итак воспользуемся формулой (x^n)'=n*x^{n-1} несколько раз.
1) y'=(x^ \frac{1}{2})'= \frac{1}{2} * x^{ \frac{1}{2} - 1} = \frac{1}{2} * x^{- \frac{1}{2}
2) y''=(y')'=(\frac{1}{2} * x^{- \frac{1}{2}})' = \frac{1}{2} * (x^{- \frac{1}{2}})' = \frac{1}{2} * (- \frac{1}{2}) x^{- \frac{1}{2}-1} = - \frac{1}{4} * x^{- \frac{3}{2}}
3) y'''=(y'')'=(- \frac{1}{4} * x^{- \frac{3}{2}} )' = -\frac{1}{4} * (x^{- \frac{3}{2}})' = -\frac{1}{4} * (- \frac{3}{2}) x^{- \frac{3}{2}-1} = \frac{3}{8} * x^{- \frac{5}{2}}
4) y''''=(y''')'=\frac{3}{8} * (x^{- \frac{5}{2}} )' = \frac{3}{8} * (- \frac{5}{2}) x^{- \frac{5}{2}-1} = -\frac{15}{16} x^{- \frac{7}{2}}
Теперь уже у нас более чем достаточно данных для создания формулы производной n-ного порядка:
1) в общем виде формула одна и таже (знак)(дробное число)*(х в какой-то степени), то есть что-то похожее на \begin{array}{c}+&-\end{array} \frac{a}{b} *x^c
2) чередование знака у нас идет так, что на каждой производной нечетного порядка знак +, а на нечетного знак -. Это можно регулировать так (-1)^{n+1}
3) степень при х, с каждым порядком уменьшается от изначальной на 1. То есть описывается так: c= \frac{1}{2} - n
4) знаменатель коефициента каждый порядок увеличивается на 2. Это можно описать например b=2^n
5) с числителем вот сложновато получается. Тут красивого ответа не выйдет, но можно увидеть это как произведения a=1*3*5*7*...*(2n-3)
6) А теперь все в кучу y^{(n)}=(x^ \frac{1}{2})^{(n)}=(-1)^n * \frac{1*3*5*...*(2n-3)}{2^n} * x^{\frac{1}{2}-n}
4,5(48 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ