заявленный и в приведённом условии. Далее порассуждаем практически:
;
;
;
;
;
;
производная
больше производной
, т.е. дальше левая часть уравнения, растёт быстрее, чем правая, а значит, других корней при
быть не может.
левая часть уравнения положительна, а правая отрицательна, так что других корней при
быть не может.
, так как при сравнении двух непрерывных функций на этом интервале меняется знак.
где
то:
Это число, очевидно иррационально, что легко доказать от обратного методом Евклида. Однако справа должно быть рациональное число
а значит, мы пришли к противоречию. Таким образом, второе решение иррационально.
по определению дающая решение, т.е. являющаяся обратной, к функции
Функция вводится аналогично, скажем, функции
являющейся решением уравнения
но в отличие от арктангенса, функция Ламберта используется намного реже в прикладных задачах (в основном в задачах теплопроводности), и поэтому – менее широко известна. Функция вводится на расширенной комплексной плоскости, т.е. алгебраически, а не арифметически, а значит по определению, может быть многозначной, и является таковой при отрицательных значениях аргумента
хотя нам достаточно будет знать лишь её действительные значения, которых при отрицательных аргументах всегда два. Вид действительных ветвей функции Ламберта представлен на приложенном изображении.
;
;
;
;
тогда:
отсюда через функцию Ламберта:
;
равна:
;
искомое значение и вычисляя
добиваясь его равенства 
как раз и даст значение
, что можно легко проверить подстановкой.
;
;
;
;
1) 1/8 - наличает за 1 час первая труба
1/6 - вторая
1/4 - третья
1/8+1/6+1/4=15/24=5/8 - будет заполнено
2) х л. - во втором баке, 1,4х л. - в первом
х-25=1,4х+25
0,4х=50
х=125 л - во втором баке
125*1,4=175л - в первом
125+175=300л - в двух баках
3) 350-350*0,2= 280 (руб) - после снижения
280+0,2*280=336 (руб) - после повышения