Предложим, что основание равнобедренного треугольника = 7 см, значит, боковые стороны равны (из определения равнобедренного треугольника "Равнобедренный треуголник - это треугольник, у которого боковые стороеы равны"), найдем их.19 - 7 = 12 см. 12:2 = 6 см.
Вспомним "Неравенство треугольников". Каждая сторона треугольника меньше суммы двух других сторон. Возьмем треугольник АВС, например (прикреплен к ответу). Проверяем.
AB < AC+BC AC > AB+BC ВС < AB+AC
6 см < 13 см 7 см < 12 см 6 см < 13 см
Мы доказали, что такой треугольник существует.
ответ: основание = 7 см, боковые стороны = по 6 см каждая.
В повседневной жизни мы часто сталкиваемся с такими понятиями, как половина, треть, четверть. А это ведь тоже дроби. С самого детства мы слышим такие выражения: "весит четверть килограмма", "одна вторая листа" или "три четверти часа". Во всех этих случаях мы говорим о дробях: одна четверть, две четверти, три четверти, одна вторая и треть - все это дроби. В своей работе мы показали, что дроби появились очень давно и на протяжения всего времени существования человека, он использовал, на ряду с целыми числами, и дроби.
Мы узнали, что: дроби появились в Древнем Египте для более точного счёта; слово дробь произошло от слова "дробить", "ломать", "разбивать на части"; дробная черта появилась всего 300 лет назад; в каждой культуре были и есть интересные задачи с дробями; дроби были важны для решения практических задач. И раз древние египтяне, вавилоняне, римляне и др. могли использовать дроби и проводить вычисления с использованием дробей, то и современный человек, даже имея современную вычислительную технику, обязан уметь пользоваться дробями.
Вычисляем определитель матрицы 3×3:
∆ =
2 3 2
5 1 4
1 6 7
= 2·1·7 + 3·4·1 + 2·5·6 - 2·1·1 - 2·4·6 - 3·5·7 = 14 + 12 + 60 - 2 - 48 - 105 = -69.
Находим определители:
∆1 =
5 3 2
1 1 4
0 6 7
= 5·1·7 + 3·4·0 + 2·1·6 - 2·1·0 - 5·4·6 - 3·1·7 = 35 + 0 + 12 - 0 - 120 - 21 = -94.
∆2 =
2 5 2
5 1 4
1 0 7
= 2·1·7 + 5·4·1 + 2·5·0 - 2·1·1 - 2·4·0 - 5·5·7 = 14 + 20 + 0 - 2 - 0 - 175 = -143.
∆3 =
2 3 5
5 1 1
1 6 0
= 2·1·0 + 3·1·1 + 5·5·6 - 5·1·1 - 2·1·6 - 3·5·0 = 0 + 3 + 150 - 5 - 12 - 0 = 136.
ответ: x = ∆1 / ∆ = -94 / -69 = 94 / 69.
y = ∆2 / ∆ = -143 /-69 = 143 / 69.
z = ∆3 / ∆ = 136 / -69 = - 136 / 69.