М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ilkingaraev90
ilkingaraev90
20.04.2022 18:27 •  Математика

Тура пропорционал тәуелділік. Кері пропорционал тәуелділік. 2-сабақ у-тің мәні -тің мәніне кері пропорционал. Кестені толтыр.
х 2
3
12
у 6
4
пхжжж​

👇
Открыть все ответы
Ответ:
diana1140
diana1140
20.04.2022
Рассмотрим произведение чисел 24⋅73=1752.Один из множителей в этом произведении делится на 3, т.е. 24:3.Можно убедиться, что и всё произведение делится на 3, т.е. 1752:3=584. В произведении 25⋅58=1450 множитель 25 делится на 5.Также можно сделать вывод, что всё произведение делится на 5, т.е. 1450:5=290. Итак, признак делимости произведения:если хотя бы один из множителей делится на некоторое число, то и произведение делится на это число.Значит, если a делится на некоторое число с, то и ab также делится на это число с.Пример:Рассмотрим сумму чисел 12 и 21, т.е. (12+21).В этой сумме каждое из слагаемых делится на 3. Проверяя делимость суммы на 3, получим, что сумма 33 тоже делится на 3.Итак, признаки делимости суммы и разности чисел: Свойство 1.Если каждое слагаемое делится на некоторое число, то и вся сумма делится на это число, т.е.,если a делится на b, и c делится на b, то (a+c) делится на b.Свойство 2.Если одно слагаемое делится на некоторое число, а другое слагаемое не делится на это число, то и вся сумма не делится на это число, т.е.,если a делится на b, а c не делится на b, то (a+c) не делится на b.Пример:12 делится на 3, а 22 не делится на 3, то (12+22) не делится на 3. Свойство 3.Если одно слагаемое делится на некоторое число и сумма делится на это же число, то другое слагаемое тоже делится на это число, т.е.,если a делится на b, и (a+c) делится на b, то c делится на b.Пример:12 делится на 3 и (12+21) делится на 3, то 21 делится на 3.Свойство 4.Если одно число делится на некоторое другое число, которое делится на третье число, то первое число делится на третье число, т.е.,если a делится на c, и c делится на b, то a делится на b.Пример:48 делится на 12, и 12 делится на 3, то 48 делится на 3.Свойство 5.Если и уменьшаемое, и вычитаемое делятся на некоторое число, то и разность делится на это число.Пример:Разность (35−20) делится на 5, т.к. 35 делится на 5, и 20 делится на 5.
4,5(66 оценок)
Ответ:
shidiemmacom1
shidiemmacom1
20.04.2022
Обозначим за F(n) количество n-значных чисел, состоящих из двоек и пятёрок, у которых никакие две двойки не стоят рядом.
Рассмотрим F(n+2). Как можно построить (n+2)-значное число, обладающее указанным свойством? Можно взять (n+1)-значное число с таким свойством и приписать к нему пятерку (!) или взять (n+1)-значное число с таким свойством, не оканчивающееся на двойку, и приписать к нему двойку () ровно F(n). Тогда F(n+2) = F(n+1) + F(n). Так как F(1) = 2, F(2) = 3, то F(n) на самом деле (n+1)-е число Фибоначчи, тогда F(10) = 89.

Примечания.
1) Последовательность Фибоначчи задаётся соотношением
\mathcal F_0=\mathcal F_1=1;\qquad\mathcal F_{n+2}=\mathcal F_{n+1}+\mathcal F_n
Первые члены последовательности Фибоначчи (начиная с нулевого):
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, … 
2) Почему чисел со свойством (!!) ровно F(n). Понятно, что пятерку можно приписать к любому числу с заданным свойством, т.е. если X - n-значное число с нужным свойством, то 10X+5 - (n+1)-значное число с нужным свойством. И наоборот, если 10X+5 - (n+1)-значное число с нужным свойством, то X - n-значное число с нужным свойством. Поэтому число (n+1)-значных чисел с нужным свойством, оканчивающихся на 5, равно числу n-значных чисел с нужным свойством.
4,6(1 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ