Опять не подходит. Итак мы доказали, что среди всех нечетных чисел начинающихся от 5 и далее, не будет такой тройки чисел. Можно было бы сказать что таких чисел больше нет. Но если вы внимательно это прочитали, то наверняка заметили бы, что я не рассмотрел в качестве х, число равно 1. Итак Х1=1, Х2=3 и Х3=5 Все числа простые и отличаются на 2, как и требовалось по условию. И данная тройка единственная за исключением, тройки чисел приведенной в условии задачи. Единственность мы доказали выше. ответ 1, 3, 5
=26325/1802= 14 1097/1802
2)14 1097/1802 * 42 2/5 = (26325*212)/(1802*5) =
=(5265*2)/(17*1)= 10530/17= 619 7/17
3) 619 7/17 * 47 2/9 = (10530*425)/ (17*9) =
=(1170*25)/(1*1)=29250
4) 125/161 * 8 216/617 = ( 125*5152)/(161*617)=
= (125*32)/(1*617) = 4000/617=6 298/617
5) 6 298/617 * 15 17/40 = (4000*617)/(617*40) = 100
6) 100* 22 31/36 = (823*100)/(36*1)=
= (823*25)/(9*1)= 20575/9 = 2286 1/9
7) 29250 - 2286 1/9 = 26963 8/9
ответ: 26963 8/9 .