Cos²x\2- sin²x\2=sin(π\2-2x) cos²x\2=(1+cosx)\2 sin²x\2=(1-cos)\2 sin(π\2-2x)=cos2x
(1+cosx)\2-(1-cosx)\2=cos2x cos2x=2cos²x-1
1+cosx-1+cosx=2(2cos²x-1)
4cos²x-2cosx-2=0
2cos²x-cosx-1=0 введём замену переменной . Пусть cosx=y
2у²-у-1=0
D=1-4·2·(-1)=9 √D=3
y1=(1+3)\4=1
y2=(1-3)\4=-1\2
Вернёмся к замене : cosx=y1
cosx=1
x=+- arccos1+2πn n∈Z
x=2πn n∈Z
cosx=y2
cosx=-1\2
x=+- arccos(-1\2)+2πm m∈Z
так как значение арккосинуса отрицательное , то arccos(-1\2)=π-π\3=2π\3
x=+-2π\3+2πm m∈Z
Число будет кратным 15, если оно делиться одновременно и на 3 и на 5.
Число делиться на 5, если оно заканчивается на 5 ил 0.
Число делиться на 3, если сумма его цифр делиться на 3.
Подставляем 5 вместо последней звездочки 35*045, сумма цифр 3+5+0+4+0=17, значит вместо первой звездочки может стоять:
цифра 1 : 351045/15=23403;
цифра 4: 354045/15=23603;
цифра 7: 357045/15=23803.
Подставляем 0 вместо последней звездочки 35*040, сумма цифр 3+5+0+4+0=12, значит вместо первой звездочки может стоять:
цифра 0: 350040/15=23336
цифра 3: 353040/15=23536
цифра 6: 356040/15=23736
цифра 9: 359040/15=23936
ответ: 351045, 354045, 357045, 350040, 353040, 356040, 359040
пусть уг СОВ =х*,
тогда уг АОС=(х+60)*
т.к. уг АОВ развернутый=180* , то уг СОВ и АОС смежные
х+х+60=180
2х=120
х=60* уг СОВ
х+60=120* уг АОС