1234:10 = 1230 (остаток 4)
2345:10= 2340 (остаток 5)
34567:100= 34500 (остаток 67)
1
10 - 11 классы Геометрия 21 балл
В правильной четырехугольной пирамиде сторона основания равна 6 см, а угол наклона боковой грани к плоскости основания равен 60 градусов. Найдите боковое ребро пирамиды
По больше объяснений Следить Отметить нарушение Missvolodya 18.03.2011
ответ
Проверено экспертом
ответ дан
KuOV
KuOV
Пирамида правильная, значит в основании квадрат, боковые грани - равные равнобедренные треугольники, высота прецируется в точку пересечения диагоналей квадрата.
Пусть Н - середина CD. Тогда SH - медиана и высота равнобедренного треугольника SCD, ОН - медиана и высота равнобедренного треугольника OCD.
SH⊥CD, OH⊥CD, ⇒∠SHO = 60° - линейный угол двугранного угла между боковой гранью и основанием.
ОН = AD/2 = 6/2 = 3 cм как средняя линия ΔACD.
ΔSOH: ∠SOH = 90°, cos∠SHO = OH/SH
SH = OH / cos∠SHO = 3 / (1/2) = 6 см
ΔSHC: ∠SHC = 90°, SH = 6 см, HС = 3 см, по теореме Пифагора:
SC = √(SH²+ HC²) = √(36 + 9) = √45 = 3√5 см
1234:10=123 (4 остаток). Проверка: 123х10+4=1234.
2345:10=234 (5 остаток). Проверка: 234х10+5=2345.
34567:100=345 (67 остаток). Проверка: 345х100+67=34567.