РЕШЕНИЕ
Рисунок к задаче в приложении.
а) По оси Х - t=2, S(2) = 8 км - через 2 часа - ОТВЕТ
б) Остановка - когда расстояние не изменяется. Находим и вычисляем время.
t2 = 7, t1 = 3
Время остановки - разность координат по оси Х - времени.
Т = 7 - 3 = 4 ч - остановка - ОТВЕТ.
в) Во км от дома.
Находим на оси S значение S= 4 км. Проводим горизонтальную линию параллельно оси времени. Оказалось две точки пересечения с графиком пути. Проводим вертикальные линии и находим время.
ОТВЕТ: Через 1 час - уходил и через 10 часов - возвращался.
Рисунок с решением задачи в приложении.
Подробнее - на -
Пошаговое объяснение:
ответ:Дан дифференциальный закон распределения непрерывной случайной величины Х. Найти неизвестный параметр , интегральный закон распределения, математическое ожидание, дисперсию, среднее квадратичное отклонение. Построить графики дифференциальной и интегральной функций распределения.
x-apple-ql-id://F21E2C4C-9C96-4883-A1FD-8576C875E770/x-apple-ql-magic/D02BE31B-7F24-400D-B0CB-1490CFB179C4.png
Пошаговое объяснение:
Дан дифференциальный закон распределения непрерывной случайной величины Х. Найти неизвестный параметр , интегральный закон распределения, математическое ожидание, дисперсию, среднее квадратичное отклонение. Построить графики дифференциальной и интегральной функций распределения.
x-apple-ql-id://F21E2C4C-9C96-4883-A1FD-8576C875E770/x-apple-ql-magic/D02BE31B-7F24-400D-B0CB-1490CFB179C4.png
а) 5 и 6;
б) 0 и 1.
Пошаговое объяснение:
а) 25 < 35,9 < 36,
функция у = √х - возрастающая, тогда
√25 < √35,9 < √36, т.е.
5 < √35,9 < 6.
ответ: между числами 5 и 6.
б) 4 < 8 < 9,
функция у = √х - возрастающая, тогда
√4 < √8 < √9, т.е.
2 < √8 < 3.
Вычтем из каждой части неравенства число 2, получим
2-2 < √8-2 < 3-2,
0 < √8-2 < 1.
ответ: между числами 0 и 1.