m² + 7m - 139 = n²
Рассмотрим данное уравнение как
квадратное относительно m:
m² + 7m - 139 - n² = 0
m² + 7m - (139 + n²) = 0
Находим дискриминант:
D = 49 + 4*139 + 4n² =
= 49 + 556 + 4n² = 605 + 4n²
Разложим число 605 на
простые множители: 605 = 5*11*11.
Тогда D = 5*11*11 + 4n²
D - 4n² = 5*11*11
Так как дискриминант должен являться квадратом
целого числа D = k², то рассматриваем случаи
k² - 4n² = 5*11*11 => (k - 2n)(k + 2n) = 5*11*11
k - 2n = 5, k - 2n = 11, k - 2n = 55,
k - 2n = 121 и k - 2n = 605
Соответственно и для k + 2n.
Имеем набор дискриминантов 63², 33²
и 303². Находим соответственно
корни исходного уравнения:
Для D = 33
m₁ = (-7 - 33)/2 = -40/2 = -20
m₂ = (-7 + 33)/2 = 26/2 = 13
Для D = 63
m₁ = (-7 - 63)/2 = -70/2 = -35
m₂ = (-7 + 63)/2 = 56/2 = 28
Для D = 303
m₁ = (-7 - 303)/2 = -310/2 = -155
m₂ = (-7 + 303)/2 = 296/2 = 148
Таким образом уравнению удовлетворяют
12 решений (m, n) = (-20, -11), (m, n) = (-20, 11), (m, n) = (13, -11) и (m, n) = (13, 11), (m, n) = (-35, -29), (m, n) = (-35, 29), (m, n) = (28, -29) и (m, n) = (28, 29), (m, n) = (-155, -151), (m, n) = (-155, 151), (m, n) = (148, -151) и (m, n) = (148, 151)
Пошаговое объяснение:
Задача 1. Файл "плоскость"
Дано:
плоскость u;
∠PMK =60°;
l PK l= 8√3;
l MN l=8√2.
Найти:
∠PMN
l PK l / l MP l = tg(∠PMK);
l MP l=l PK l/ tg(∠PMK);
l MP l=8√3/tg60°; tg60°=sin60°/cos60°=(√3/2)/(1/2)=√3;
l MP l=8√3/√3=8;
cos(∠PMN)=l MP l/l MN l;
cos(∠PMN)=8/(8√2)=1/√2=√2/(√2*√2)=√2/2;
∠PMN = arccos(√2/2)=45°
ответ:∠PMN = 45°
Задача 2. Файл "ромб"
Дано
ABCD - ромб со стороной 20 см
l CD l=20 см
∠BCD=120°
l MC l=√41 см
Найти:
l MD l, l ME l
l MD l=√(l MC l²+ l CD l²);
l MD l=√(√41)²+20²)=√441=21 (см);
Δ CED - прямоугольный, т.к. у ромба диагонали пересекаются под прямым углом.
Сумма углов выпуклого 4-х угольника, а, значит, и ромба - 360°. У ромба противоположные углы равны, значит:
∠CDA=(360°-120-120)/2=60;
Диагональ ромба является биссектрисой противолежащих углов, значит:
∠CDE=∠CDA/2;
∠CDE=60°/2=30°;
В Δ CED l CE l=l CD l*sin(∠CDE);
l CE l=20*sin30°=20*(1/2)=10 (см);
ΔMCE- прямоугольный.
l ME l=√(l CE l²+l MC l²);
l ME l=√(10²+(√41)²)=√141.
ответ: l MD l=21 см, l ME l =√141 см