При каких значениях цифры числа ты ты 22 577 будет делиться на два? При каких значениях цифры число 33 577 будет делиться на три? При каких значениях цифры числа 32 507 7 будет делиться на шесть
Площадь поверхности прямоугольного параллелепипеда со сторонами a, b, c равна 2(ab + bc + ac) Объем равен abc Требуется найти два прямоугольных параллелепипеда с равными площадями поверхности, но разными объемами.
Попробуем найти такие два параллелепипеда. Пусть стороны первого параллелепипеда a₁ = 3, b₁ = 3, c₁ = 3 (таким образом, это куб со стороной 3). Второй параллелепипед выберем со сторонами a₂ = 1, b₂ = 1 и некой неизвестной c₂, которую мы найдём из равенства площадей.
Объемы не равны, а значит, исходное утверждение неверно, поскольку нашелся контрпример - два прямоугольных параллелепипеда (3, 3, 3) и (1, 1, 13) с равными площадями поверхности, но неравными объемами.
Площадь поверхности = сумме площадей граней. У прямоугольного параллелепипеда со сторонами a, b, c все 6 граней - прямоугольники, 2 со сторонами a и b, 2 со сторонами b и c, 2 со сторонами a и c. Суммарная площадь поверхности 2ab + 2bc + 2ac = 2(ab + bc +ac)
Большая сторона у прямоугольника это гипотенуза обозначим её за x тогда меньшая x-7 , второй катет обозначим за y найдём второй катет : y=x^2-(x-7)^2=14*x-49 тогда площадь по двум катетам равна s=0.5*(x-7)(14*x-49) s=294 => 294=0.5*(x-7)(14*x-49) => 588=(x-7)(14*x-49) x=4.9 + 730√( 741)-один из корней уравнения если решить получишь егоx-7=4.9 + 730√(741)-7= -2.1+ 730√( 741) 14*x-49= x^2=подсчитаешь дальше сам, а процент узнать просто одну сторону на другую делишь и умножаешь на 100
Объем равен abc
Требуется найти два прямоугольных параллелепипеда с равными площадями поверхности, но разными объемами.
Попробуем найти такие два параллелепипеда. Пусть стороны первого параллелепипеда a₁ = 3, b₁ = 3, c₁ = 3 (таким образом, это куб со стороной 3). Второй параллелепипед выберем со сторонами a₂ = 1, b₂ = 1 и некой неизвестной c₂, которую мы найдём из равенства площадей.
2(a₁*b₁ + b₁*c₁ + a₁*c₁) = 2(a₂*b₂ + b₂*c₂ + a₂*c₂)
3*3 + 3*3 + 3*3 = 1*1 + 1*c₂ + 1*c₂
27 = 2c₂ + 1
c₂ = 13
Итак, площади поверхностей у параллелепипеда со сторонами 1, 1, 13 и куба со стороной 3 равны. Проверим, равны ли объемы.
V₁ = a₁ * b₁ * c₁ = 3³ = 27
V₂ = a₂ * b₂ * c₂ = 1 * 1 * 13 = 13 ≠ V₁
Объемы не равны, а значит, исходное утверждение неверно, поскольку нашелся контрпример - два прямоугольных параллелепипеда (3, 3, 3) и (1, 1, 13) с равными площадями поверхности, но неравными объемами.
Площадь поверхности = сумме площадей граней. У прямоугольного параллелепипеда со сторонами a, b, c все 6 граней - прямоугольники, 2 со сторонами a и b, 2 со сторонами b и c, 2 со сторонами a и c.
Суммарная площадь поверхности 2ab + 2bc + 2ac = 2(ab + bc +ac)