М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
oksana1410
oksana1410
03.03.2023 11:40 •  Математика

13.2. запишите в виде многочленов произведения ​


13.2. запишите в виде многочленов произведения ​

👇
Открыть все ответы
Ответ:
poloch
poloch
03.03.2023

Предположим, что х - это количество грузовых автомобилей, а (750-х) - это количество легковых автомобилей,

у грузовых автомобилей 6 колёс, а у легковых автомобилей - 4, также из условия задачи известно, что всего 3 024 колеса

тогда согласно этим данным можно составить уравнение:

6х+4(750-х)=3 024

6х+3 000-4х=3 024

2х+3 000=3 024

2х=3 024-3 000

2х=24

х=24:2

х=12 (м.) - грузовые автомобили.

750-х=750-12=738 (м.) - легковые автомобили.

1) 750·4=3 000 (к.) - было бы колёс, если бы все автомобили были легковыми.

2) 3 024-3 000=24 (к.) - лишнее количество колёс (сколько колёс имеется потому, что среди автомобилей есть грузовые).

3) 6-4=2 (части) - разница в количестве колёс (у грузовых автомобилей на 2 колеса больше, чем у легковых)

4) 24:2=12 (м.) - грузовые автомобили.

5) 750-12 =738 (м.) - легковые автомобили.

ответ: в гараже стоят 12 грузовых автомобилей и 738 легковых автомобилей.

Проверка:

12+738=750 (шт.) – автомобилей всего.

12·6=72 (колёса у грузовых автомобилей)

738·4=2 952 (колёса у легковых автомобилей)

72+2 952=3 024 (колеса всего)

4,5(25 оценок)
Ответ:
aitxam
aitxam
03.03.2023

пропорции

мы уже указывали, как трудно выявить на средневековых памятниках закон, которым руководились при установлении их пропорций: нередко грубое исполнение, подчинение требованиям кладки, неравномерная толщина слоев раствора осложняют и затемняют принцип построений. тем не менее, некоторые правила могут быть выведены, и между ними — закон целых чисел и закон простых отношений.

целые числа. — можно бесконечное количество случаев, применение целых чисел. среди чисел, наиболее точному определению, наибольшей простотой отличаются числа, выражающие в футах и дюймах сечение устоев, контрфорсов и колонн; мало, например, найдется зданий, в которых не было бы колонн, имеющих в диаметре ровно один фут.

простые отношения. — что касается простых отношений, то во многих случаях они очевидны при первом же взгляде. станем ли мы рассматривать фасад собора парижской богоматери или внутренность амьенского собора (рис. 279), нам почти не понадобится обмеров, чтобы уловить принцип, которым руководились при установлении пропорций. в соборе парижской богоматери (р), очевидно, стремились к тому, чтобы придать фасаду форму квадрата, а башням — высоту, равную половине стороны этого квадрата

закономерности. — архитекторы средневековья не только закон простых отношений, как и античные зодчие, но предпочитают именно те отношения, которых придерживалась античная классика. мы выяснили, что в пределах практически достижимого приближения возможно перевести в простые отношения пропорции,   свойственные   некоторым треугольникам,   как,   например,   равносторонним,   египетскому и   их   производным. эти треугольники привлекали внимание строителей в течение всего средневековья, и некоторые документы рассказывают о методах их применения.

масштаб

при виде античного здания и даже при виде романского здания чувствуется, что камень используется лишь на небольшую долю того напряжения, которое он способен выдержать.

при взгляде на французские соборы, наоборот, чувствуется, что архитектор желал заставить материал работать до предельного напряжения. это и является решающим для определения действительных размеров здания. в самом деле, такое сооружение, где камень работает до предельных напряжений, имеет свой вполне определенный масштаб.

вообразите себе готическую башню или, чтобы еще больше вопрос, каменную призму, которая своей тяжестью нагружает основание до крайнего предела. удвойте все ее линейные размеры. тогда вес ее, пропорционально третьей степени этих размеров, станет в восемь раз больше. в то же время сечение основания, пропорционально квадратам линейных размеров, увеличится только в четыре раза.

вывод напрашивается сам собой: если в первом случае был нагружен до предела, во втором случае он будет раздавлен. другими словами, если дать чертеж здания с указанием, что камень работает с наибольшим сопротивлением, масштаб здания установлен. именно так обстоит дело в огромных готических сооружениях.

ввиду того, что камень здесь дает максимум напряжения, абсолютная величина здания не содержит ничего произвольного, и глаз, этот тончайший измерительный прибор, сразу определяет масштаб, который затем может быть, путем расчета, выражен в цифрах. это — первый показатель размеров; но он не единственный. романское искусство, как мы видели, для выражения абсолютной величины прибегало к такому приему кладки, где каждое звено здания соразмерно одному ее ряду, служившему как бы единицей измерения, бывшей везде на виду.

этот метод выражения масштаба сохраняется. как и в романскую эпоху, размер камней, применяемых в сооружении, выражен высотой баз колонн, листвы, украшающей капители и карнизы. не только каждая деталь готической конструкции согласуется своими размерами с высотой ряда кладки, но, как впервые сформулировал лассю, каждая часть здания согласована еще по размерам с человеческим ростом.

асимметрия. — архитекторы, так тонко анализировавшие игру перспективы, не могли придавать большую ценность таким   комбинациям,   которые   искажаются     перспективе и осложняются изменчивой игрой света и тени. закон симметрии в том виде, как мы его понимаем теперь, требующий, чтобы то, что расположено справа, было повторено и слева, этот стеснительный закон играет весьма несущественную роль в средние века.

4,6(44 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ