М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Игорь5002
Игорь5002
22.11.2022 10:33 •  Математика

Рассказ как цифры и буквы подружились​

👇
Открыть все ответы
Ответ:
Katia1717
Katia1717
22.11.2022
Добрый день! Давайте решим эту задачу вместе.

Для начала, нам нужно понять, как выглядит треугольник ABC и где находятся точки D и M относительно этого треугольника.

Представим, что у нас есть треугольник ABC. Точка D находится на одной из сторон треугольника, а точка M находится вне этого треугольника, но в одной плоскости с ним.

Обозначим точки вершин треугольника как A, B и C, а точки D и M обозначим соответственно. Давайте проведем параллельную плоскость через точку M и перпендикулярно плоскости ABC. Эта плоскость будет пересекать стороны треугольника ABC в точках X, Y и Z.

Так как треугольник ABC - равносторонний, все его стороны равны. АВ = BC = CA = 6 см.

Мы знаем, что расстояние от точки Д до каждой из вершин равно 4 см. То есть, длина отрезка ДА равна 4 см, длина отрезка ДВ равна 4 см и длина отрезка ДС равна 4 см.

Теперь давайте обратим внимание на треугольник AMB, который образуется точками А, М и В. Он является прямоугольным треугольником, так как сторона МВ является прямой линией. Известна длина отрезка АВ = 6 см. Недостающая сторона треугольника АМВ равна 4 см (расстояние от точки Д до вершины В).

Теперь мы можем воспользоваться теоремой Пифагора для нахождения длины отрезка АМ. Эта теорема гласит, что квадрат длины гипотенузы равен сумме квадратов длин катетов. В нашем случае гипотенузой является отрезок АМ, катетами - отрезки АВ и ВМ. Длина АВ равна 6 см, а длина ВМ равна 4 см. Подставим это в формулу:

АМ² = АВ² + ВМ² = 6² + 4² = 36 + 16 = 52

Таким образом, длина отрезка АМ равна √52 см. Это приближенно равно 7.211 см.

Теперь мы нашли расстояние от точки М до прямой АВ. Однако, нас интересует расстояние от точки М до плоскости АВС. Изобразим найденные точки X, Y и Z на плоскости ABC.

Теперь наши точки A, M, B и C образуют пирамиду, где основанием является треугольник AMB, а вершиной является точка C.

Для нахождения расстояния от точки М до плоскости АВС нужно вычислить длину отрезка, опущенного из точки М на плоскость АВС, перпендикулярно к этой плоскости. Обозначим эту длину как h.

Используем свойство пирамиды: расстояние от вершины пирамиды до плоскости, параллельной основанию пирамиды, равно произведению высоты пирамиды на отношение площадей основания и параллельной плоскости.

В нашем случае h × Sₘ/Sₐ = h × (AM² × Sₐ/Sₐ) = AM² × h = h × 36.

Таким образом, нам остается найти значение h.

Но заметим, что треугольник AMB и треугольник XYZ (полученные ортогональным проецированием треугольника ABC) подобны. Отношение длин сторон в этих треугольниках одинаково, равно AM/AX = 6/4 = 3/2.

Так как длина стороны треугольника XYZ равна 4 см, мы можем найти значение h:

h = (3/2) × 4 = 6 см.

Таким образом, расстояние от точки М до плоскости АВС равно 6 см.

Надеюсь, данное объяснение помогло вам понять, как найти расстояние от точки М до плоскости АВС. Если у вас возникнут дополнительные вопросы, не стесняйтесь задавать их!
4,8(73 оценок)
Ответ:
dobugrajk18
dobugrajk18
22.11.2022
Для нахождения точки максимума функции Y=ln(x-11)-5x+2, мы должны первым делом взять производную данной функции и найти ее корень, так как точка максимума функции соответствует экстремуму производной.

Для начала, давайте возьмем производную функции Y по переменной x. Чтобы упростить вычисления, мы можем использовать правило дифференцирования, которое гласит, что производная функции ln(u) по x равна (u' / u), где u' - производная u.

Итак, берем производную от функции Y:
Y' = d/dx[ln(x-11)-5x+2]
= (1 / (x-11)) - 5

Теперь, нам нужно найти корень уравнения Y' = 0, чтобы найти экстремум производной и, следовательно, точку максимума функции Y.

Исходное уравнение:
(1 / (x-11)) - 5 = 0

Для решения этого уравнения, мы можем начать с добавления 5 к обеим сторонам:
1 / (x-11) = 5

Затем, мы можем взять обратное значение от обеих сторон уравнения:
x-11 = 1 / 5

Теперь достаточно просто решить это уравнение для x:
x = 1 / 5 + 11
x = 1 / 5 + 55 / 5
x = 56 / 5
x = 11.2

Таким образом, мы получаем, что x = 11.2.

Для нахождения соответствующего значения Y и точки максимума, мы можем подставить значение x = 11.2 обратно в исходную функцию Y:
Y = ln(11.2-11)-5(11.2)+2
= ln(0.2)-56+2
= -Infinity (Отрицательная бесконечность)

Таким образом, точка максимума функции Y=ln(x-11)-5x+2 равна (11.2, -Infinity), где x = 11.2 и Y = -Infinity. Это означает, что функция не имеет точки максимума, а вместо этого имеет горизонтальную асимптоту.
4,5(43 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ