М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
lilyagoz89
lilyagoz89
09.12.2022 16:56 •  Математика

Таблица умножения и деления на 8 и 9. Заполни прследовательность чисел, используя таблицу умножения


Таблица умножения и деления на 8 и 9. Заполни прследовательность чисел, используя таблицу умножения

👇
Ответ:
yadlos38
yadlos38
09.12.2022

Пошаговое объяснение:

1)36,40,38,25,36,58,36

2)52,56,78,90,100,54,9

4,6(98 оценок)
Открыть все ответы
Ответ:
Eliseevka12
Eliseevka12
09.12.2022

Для наглядности удобно провести некоторое соответствие с трехмерным пространством

Понятно что z(x,y) можно в нем изобразить как некоторую поверхность

\{ x,y,x \cdot e^y\}

Точке (1,4) соответствует z=e^4, т.е. точка (1,4,e^4) (*)

Линию xy=4 удобнее записать как трехмерную кривую \{ x,y(x),e^4\}, что будет пересекать поверхность z(x,y) при x=1

Запишем уравнение касательной к этой кривой в точке (1,4,e^4), в качестве параметра берем переменную x

\{x,4-4(x-1),e^4\} (#)

(вычисляется по аналогии с \overset{\rightharpoonup }{r}(t)-\overset{\rightharpoonup }{r}(t_0)=\frac{d}{dt} \overset{\rightharpoonup }{r}(t_0) \cdot (t-t_0) )

В прикрепленном файле нарисована поверхность, кривая и касательная.

Зная уравнение касательной, построим единичный вектор в направлении убывания x:

Пусть x=0, тогда из (#) получим точку (0,8,e^4)

Соотв. единичный вектор в направлении этой точки из (*) имеет вид

\overset{\rightharpoonup }{n} = \{-1,4,0\}\cdot\frac{1}{\sqrt{17} }

Понятно что z компонента никак не повлияет на значение производной по направлению, формально вектор можно записать как

\overset{\rightharpoonup }{n} = \{-1,4\}\cdot\frac{1}{\sqrt{17} }

И, наконец, найдем искомую производную:

grad[z(M_0)]\cdot\overset{\rightharpoonup }{n}=\left\{e^4,1 \cdot e^4\right\} \cdot \{-1,4\}\cdot\frac{1}{\sqrt{17} } = \frac{3 e^4}{\sqrt{17}} \approx 39.726


Определить градиент и производную заданной функции z = xe^y в т. m0(1,4) в направлении линии xy = 4
4,4(63 оценок)
Ответ:
Arestan
Arestan
09.12.2022
ДАНО
Конус.
Sкон = 9
α = 60°
НАЙТИ
Sсферы = ?
РЕШЕНИЕ
Радиус основания R из треугольника по формуле
R = L*cos60° = 0.5*L
В сечении конуса получаем равносторонний треугольник АВС.
Радиус окружности вписанной в треугольник по формуле:
r = \sqrt{ \frac{(p-a)(p-b)(p-c)}{p} }
Для равностороннего треугольника АВС получаем
r = \frac{L}{2 \sqrt{3} }
Площадь поверхности сферы по формуле
Sсферы = 4*π*r² = 4*π*L²/(4*3) = 1/3*π*L²
Полная поверхность конуса по формуле
Sкон = π*R*(R+L) = 3*π*R² = 9
Находим значение - 
R² = 3/π - квадрата радиуса в основании.
Находим значение - L²:
L² = 4*R² = 12/π 
Подставили в формулу поверхности сферы:
Sсферы = 1/3*π*L² = 4 (ед.²) - площадь сферы - ОТВЕТ
Рисунок к задаче в приложении.
Площадь полной поверхности конуса равна 9 образующая наклонена к основанию под углом 60 градусов най
4,8(1 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ