М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Лилиана4312
Лилиана4312
07.10.2020 17:46 •  Математика

сколько существует перестановок чисел 1 2 3 4 5 6 из которых можно удалить одно число так, чтобы оставшиеся были упорядочены по возрастанию или по убыванию​

👇
Ответ:
nikolottorres
nikolottorres
07.10.2020
Для решения данной задачи, мы можем использовать принципы комбинаторики.

Первым шагом мы рассмотрим случай, когда мы удаляем число из последовательности 1 2 3 4 5 6 и оставшиеся числа должны быть упорядочены по возрастанию. Затем рассмотрим случай, когда оставшиеся числа должны быть упорядочены по убыванию.

1) Упорядоченные по возрастанию числа:

Для того чтобы найти количество перестановок, мы рассмотрим, сколько возможных мест может занимать удаляемое число.

Перестановку чисел 1 2 3 4 5 6 мы можем представить в виде строки: 123456.

Если мы удалим число 1, то оставшиеся числа должны быть упорядочены по возрастанию. То есть, оставшиеся числа могут занимать следующие позиции в строке:
_23456 (1 может занимать любое из 6 возможных мест).

Если мы удалим число 2, то оставшиеся числа должны быть упорядочены по возрастанию. То есть, оставшиеся числа могут занимать следующие позиции в строке:
1_3456 (2 может занимать 5 возможных мест, так как оно не может стоять перед 1).

Продолжая этот анализ, мы получим следующую таблицу:

| Место для удаления числа | Количество возможных мест, где могло быть удалено число |
|-------------------------|--------------------------------------------------------|
| 1 | 6 |
| 2 | 5 |
| 3 | 4 |
| 4 | 3 |
| 5 | 2 |
| 6 | 1 |

Таким образом, общее количество перестановок, где можно удалить одно число так, чтобы оставшиеся числа были упорядочены по возрастанию, равно сумме всех возможных вариантов удаления чисел: 6 + 5 + 4 + 3 + 2 + 1 = 21.

2) Упорядоченные по убыванию числа:

Также рассмотрим случай, когда оставшиеся числа должны быть упорядочены по убыванию. Здесь принцип анализа будет аналогичным, только мы будем рассматривать возможные места для удаления чисел, начиная с конца строки.

Таблица изменится следующим образом:

| Место для удаления числа | Количество возможных мест, где могло быть удалено число |
|-------------------------|--------------------------------------------------------|
| 6 | 6 |
| 5 | 5 |
| 4 | 4 |
| 3 | 3 |
| 2 | 2 |
| 1 | 1 |

Общее количество перестановок, где можно удалить одно число так, чтобы оставшиеся числа были упорядочены по убыванию, равно сумме всех возможных вариантов удаления чисел: 6 + 5 + 4 + 3 + 2 + 1 = 21.

Таким образом, общее количество перестановок, где можно удалить одно число так, чтобы оставшиеся числа были упорядочены по возрастанию или по убыванию, равно сумме количества перестановок для возрастания и для убывания: 21 + 21 = 42.

Итак, ответ на задачу: количество перестановок чисел 1 2 3 4 5 6, из которых можно удалить одно число так, чтобы оставшиеся были упорядочены по возрастанию или по убыванию, равно 42.
4,5(51 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Математика
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ