1)Да. Четыри прямых, две из которых проходят через диагонали квадрата, а другие две через середины противоположных сторон. Ето легко показать если взять квадратный лист бумаги и сложить пополам и розложыть - тогда линия сгина и будет частю (сгин конечен, а прямая - нет) оси симетрии. А таких разных складываний есть 4. 2)Нет. Треугол. бывают с прямым углом - прямоуголные. есть такая теорема:сума углов треугольника равна 180 гр., а так как 90 менше 180, то на остальные 2 угла остается еще 90 гр. то есть существуют треугольники с углом 90гр. 3)Да. Пускай m:n=m*(1/n) операцию деления поменяем умножением. Уменшим делимое и повтори замену операций (m:2):n=(m*1/2)*1/n=. А теперь скобки можна опустить так как неважно в каком порядке перемножать - результат тот же. =m*1/n*1/2, а m*1/n есть частное которое умн. на 1/2 и будет в два раза менше. Например: 12:3=4. 12:2:3=2 4)Нет. Пускай сторона квадрата 2а, тогда его площа S=(2a)^2=4a^2. Уменшим сторону в двое- получим квадрат с стороной а и площей S1=a^2 и видим что его площа в 4 раза менше, а не в два.
Верные утверждения: 1) В любой треугольник можно вписать окружность.
5) Любые два равносторонних треугольника подобны. По первому признаку подобия треугольников - любые равносторонние треугольники будут подобны, т.к. 2 угла одного треугольника равны 2-ум углам другого (по 60°)
НЕ ВЕРНЫЕ УТВЕРЖДЕНИЯ: 2) Любые два прямоугольных треугольника подобны. НЕТ, необходимо, чтобы 2 угла были равны, по первому признаку подобия треугольников.
3) Центр описанной около треугольника окружности лежит в точке пересечения биссектрис углов треугольника. НЕт, центр - это точка пересечения серединных перпендикуляров к сторонам треугольника
4) Площадь трапеции равна сумме оснований, умноженной на высоту. НЕТ, площадь трапеции - это ПОЛУСУММА оснований умноженная на высоту.
4 вариант