Журнал
Стикеры ВК
Подготовка к ЕГЭ
Задать во Войти
АнонимМатематика13 апреля 02:40
Выберите ту пару чисел, которая является решением уравнения: 3х – 2у = 4 А) ( -2; 1 ) В) ( -2; -5 ) С) ( 3; 0 )
В записи координаты точки на первом месте записана абсцисса х, на втором месте - ордината у. N(x; y). Чтобы проверить является ли пара чисел решением уравнения, надо значения х и у подставить в уравнение 3х – 2у = 4 и проверить его правильность.
А) (- 2; 1); x = - 2; y = 1;
3 * (- 2) - 2 * 1 = 4;
- 6 - 2 = 4;
- 8 = 4 - не верное равенство, значит данная пара чисел не является решением данного уравнения.
В) (- 2; - 5); x = - 2; y = - 5;
3 * (- 2) - 2 * (- 5) = 4;
- 6 + 10 = 4;
4 = 4 - равенство верное, значит эта пара чисел является решением данного уравнения.
С) (3; 0); x = 3; y = 0;
3 * 3 - 2 * 0 = 4;
9 - 0 = 4;
9 = 4 - не верно, значит пара чисел не является решением уравнения.
Д) (2; 5); x = 2; y = 5;
3 * 2 - 4 * 5 = 4;
6 - 20 = 4;
- 14 = 4 - не верно, пара чисел не является решением.
Правильное решение под буквой В.
ответ. В.
ответ:0,94.
Стрелок ведет огонь по цели, движущейся на него. Вероятность попадания в цель при первом выстреле равна 0,4 и увеличивается на 0,1 при каждом последующем выстреле. Какова вероятность получить два попадания при трех независимых выстрелах?
ответ: 0,38.
Из двух полных наборов шахмат наудачу извлекают по одной фигуре. Какова вероятность того, что обе фигуры окажутся слонами?
ответ: 1/64.
Из группы, состоящей из четырех юношей возраста 17, 18, 19 и 20 лет и четырех девушек тех же лет, наугад выбирают двух человек. Какова вероятность того, что:
а) оба выбранных окажутся юношами;
б) оба окажутся юношами, если известно, что один из выбранных юноша;
в) оба окажутся юношами, если известно, что один из них юноша, которому не более 18 лет;
г) оба окажутся юношами, если известно, что один из них юноша 17 лет?
ответ: 3/14, 3/11, 5/13, 3/7.
В одной студенческой группе обучаются 24 студента, во второй – 36 студентов и в третьей – 40 студентов. По математическому анализу получили отличные отметки 6 студентов первой группы, 6 студентов второй группы и 4 студента третьей группы. Наугад выбранный студент оказался получившим по математическому анализу отметку «отлично». Какова вероятность того, что он учится в первой группе?
ответ: 0,375.
Преподаватель экзаменует незнакомую ему группу по экзаменационным билетам, содержащим по три вопроса. Он знает, что в предыдущую сессию в этой группе было 27 успевающих студентов, из них шесть отличников, и трое неуспевающих студентов, и считает, что отличники а) А – дубль, В – на одной из половин кости 6 очков;
б) А – дубль, В – сумма очков нечетна;
в) А – на одной из половин кости «пустышка», В – сумма очков больше шести;
г) А – сумма очков больше четырех, В – сумма очков нечетна.
(16-7)=9 1 действие
36:9=4 2 действие
4*8=32 3 действие