Заметим, что сумма цифр числа дает такой же остаток при делении на 3, что и само число (разность между числом abcd... и суммой его цифр a + b + c + d + ... равна 9999...9a + 999...9b + 99...9c + 9...9d и поэтому делится на 3). Если число даёт остаток 1 при делении на 3, то следующее полученное число будет давать остаток 2 при делении на 3. Если число даёт остаток 2 при делении на 3, то следующее полученное число будет давать такой же остаток, что и 2 + 2 = 4, т.е. 1.
Исходное число даёт остаток 2 при делении на 3, тогда потом получится число с остатком 1, затем опять 2, потом 1, и т.д. Значит, число, делящееся на 3 (например, 3333) из него при загадочного калькулятора получить нельзя.
Признак делимости на 3: остаток от деления любого натурального числа на 3 равен остатку от деления на 3 суммы его цифр.
Если число имеет остаток 1 от деления на 3, то сумма цифр тоже имеет остааток 1 и сложение числа с суммой цифр дает остаток от деления на 3: 1+1=2. Если число имеет остаток 2 от деления на 3, то сумма цифр тоже имеет остаток 2 и сложение числа с суммой цифр дает остаток 1, т.к. (2+2)/3 имеет остаток 1. Таким образом, мы вернулись к предыдущему пункту и так будем ходить по кругу вечно. 41 нацело не делится на 3. Следовательно, мы никогда не не получим число, которое будет делиться без остатка на 3.
=======================================
Пошаговое объяснение: