Пусть три кабачка - x, килограммы переведем в граммы: 1кг=1000г, составим и решим уравнение:
x=500+1000
x=1500
Значит, вес трех кабачков равен 1500 грамм.
ответ: 1500 грамм.
Задание 1.
0,(7) = 7/9;
0,8(5) = 77/90;
0,73(4) = 661/900;
8,342(3) = 8 1027/3000 .
Задание 2.
5/6 = 0,8(3);
9/11 = 0,(81).
Пошаговое объяснение:
Задание 1.
Периодическую дробь обратите в обыкновенную: 0, (7) ; 0,8(5); 0, 73(4); 8,342(3)
0,(7)
1) Количество цифр в периоде = 1.
2) Количество цифр после запятой, но до периода = 0.
3) Число из цифр после запятой, включая период, = 7.
4) Число после запятой, но до периода = 0.
5) Числитель искомой дроби = п. 3 - п. 4 = 7 - 0 = 7.
6) Знаменатель искомой дроби - число, которое составлено из такого количества девяток, которое указано в п. 1, и из такого количества нулей, которое указано в п. 2 = 9 .
ответ: 0, (7) = 7/9 .
0,8 (5)
1) Количество цифр в периоде = 1.
2) Количество цифр после запятой, но до периода = 1.
3) Число из цифр после запятой, включая период, = 85.
4) Число после запятой, но до периода = 8.
5) Числитель искомой дроби = п. 3 - п. 4 = 85 - 8 = 77.
6) Знаменатель искомой дроби - число, которое составлено из такого количества девяток, которое указано в п. 1, и из такого количества нулей, которое указано в п. 2 = 90.
ответ: 0,8(5) = 77/90 .
0,73(4)
1) Количество цифр в периоде = 1.
2) Количество цифр после запятой, но до периода = 2.
3) Число из цифр после запятой, включая период, = 734.
4) Число после запятой, но до периода = 73.
5) Числитель искомой дроби = п. 3 - п. 4 = 734-73=661.
6) Знаменатель искомой дроби - число, которое составлено из такого количества девяток, которое указано в п. 1, и из такого количества нулей, которое указано в п. 2 = 900.
ответ: 0,73(4) = 661/900 .
8,342(3)
1) Количество цифр в периоде = 1.
2) Количество цифр после запятой, но до периода = 3.
3) Число из цифр после запятой, включая период, = 3423.
4) Число после запятой, но до периода = 342.
5) Числитель искомой дроби = п. 3 - п. 4 = 3423-342=3081.
6) Знаменатель искомой дроби - число, которое составлено из такого количества девяток, которое указано в п. 1, и из такого количества нулей, которое указано в п. 2 = 9000.
7) Дробную часть сокращаем на 3:
3081 / 9000 = 1027/3000.
ответ: 8,342(3) = 8 1027/3000 .
Задание 2.
Обыкновенную дробь представьте в виде периодической дроби :
5/6, 9/11.
Делим числитель на знаменатель и заключаем в скобки периодическую часть. В первом случае период равен (3) , во втором случае (81).
5/6 = 0,833333... = 0,8(3)
9/11 = 0,81818181... = 0,(81)
ответ: 5/6 = 0,8(3); 9/11 = 0,(81).
140,9 ₽ ; 17,92 ₽
Пошаговое объяснение:
1) 107,38:1,4=76,7(₽/кг)-цена мандаринов за кг
2)76,7(₽/кг)*1(кг)=76,7(₽)-стоимость мандаринов
3)51,44:0,8=64,3(₽/кг)-цена бананов за кг
4)64,3*1=64,3(₽)-стоимость бананов
5)76,6+64,3=140,9(₽)-обошлась бы покупка если бы купили каждого по 1 кг
6)107,38-76,6=30,78(₽)-сэкономленые деньги при покупке лишь одного кг мандаринов
7)64,3-51,44=12,86(₽)-потраченые деньги при покупке одного кг бананов
8)30,78-12,86=17.92(₽)-сумарно сэкономленые деньги при покупке по одному килограмму фруктов
Представим что кабачок это Х, тогда три кабачка будет 3Х.
3х=1000 г+500г
3х=1500г
х=1500/3
х=500 грамм (один кабачок)