Пошаговое объяснение:
По формуле нахождения определённого члена:
C(k; n) ·a^(n-k) ·b^k, где
С- число сочетаний из n (показатель степени) по k (порядковый номер члена разложения, который берётся на единицу меньше находимого;
a; b - аргументы выражения.
а) 3-й член разложения (a+1)⁸:
C₈²·a⁸⁻²·1²=8!/(2!·(8-2)!) ·a⁶=8!/(2!·6!) ·a⁶=(7·8)/(1·2) ·a⁶=7·4a⁶=28a⁶
б) 6-й член разложения (1-2b)²¹:
C₂₁⁵·1²¹⁻⁵·(-2b)⁵=21!/(5!·16!) ·1¹⁶·(-32b⁵)=20349·(-32b⁵)=-651168b⁵
в) 9-й член разложения (скорее всего такое (√z +z)¹⁰):
С₁₀⁸·(√z)¹⁰⁻⁸+z⁸=10!/(8!·2!) ·(√z)²·z⁸=45z¹⁺⁸=45z⁹
По условию задачи нужно угадать не сам пароль (число), а комбинацию цифр, из которых можно это число составить. Под числом будем понимать упорядоченную последовательность четырех цифр от 0000 до 9999 (то есть в отличие от четырехзначного числа впереди могут стоять нули).
Для начала разделим все числа на группы:
1. Группа чисел , состоящих из четырех одинаковых цифр.
2. Группа чисел , состоящих из трех одинаковых цифр и еще одной другой цифры.
3. Группа чисел , состоящих из двух пар одинаковых, но разных между собой цифр.
4. Группа чисел , состоящих из двух одинаковых цифр и еще из двух двух других и разных между собой цифр.
5. Группа чисел , состоящих из разных одинаковых цифр.
Определим число чисел в группа и число соответствующих им комбинаций.
1. Рассмотрим группу . Количество чисел, состоящих из четырех одинаковых цифр, равно 10.
Заметим, что для каждого такого числа есть только одна комбинация получить это число. То есть и количество комбинаций в этом случае совпадает с количеством чисел:
2. Рассмотрим группу . Определим количество чисел в этой группе. Первую цифру мы можем выбрать , вторую цифру , а также еще мы можем разместить в числе уникальную цифру. Таким образом, общее количество чисел:
Но поскольку положение уникальной цифры в числе для комбинации безразлично, а таких положений в числе 4, то количество комбинаций в 4 раза меньше:
3. Рассмотрим группу . Определим количество чисел в этой группе. Первую цифру мы можем выбрать , вторую цифру . Еще мы можем разместить в числе одну пару чисел, тогда другая размещается автоматически (это места 12, 13, 14). Таким образом, общее количество чисел:
Заметим, что 6 числам вида ААВВ, АВАВ, АВВА, ВВАА, ВАВА, ВААВ соответствует одна комбинация. То есть, количество комбинаций в 6 раза меньше:
4. Рассмотрим группу . Определим количество чисел в этой группе. Первую цифру мы можем выбрать , вторую цифру , третью цифру . Еще мы можем разместить в числе повторяющуюся пару чисел, и еще мы можем разместить на свободные места оставшиеся две цифры. Таким образом, общее количество чисел:
Проводя аналогию с предыдущим пунктом, можно понять, что одной комбинации соответствует уже 12 чисел. Чтобы это понять, можно в перечисленных в предыдущем пункте числам вместо цифр (В, В) подставлять сначала цифры (C, D), а затем (D, C) именно в таком порядке. Итак, количество комбинаций в 12 раза меньше:
5. Наконец, рассмотрим группу . Определим количество чисел в этой группе. Первую цифру мы можем выбрать , вторую цифру , третью цифру , четвертую цифру . Тогда, общее количество чисел:
Заметим, что одна комбинация соответствует числам. То есть, количество комбинаций в 24 раза меньше:
Находим общее число комбинаций:
По условию, у нас есть 3 попытки отгадать комбинацию. Значит, вероятность того, что замок откроется за первые три попытки:
ответ: 3/715
Дополнение. Определять количество комбинаций по имеющемуся количеству чисел очень удобно с перестановок с повторениями:
В частности, нижние индексы групп становятся верхними индексами в формуле перестановок с повторениями.
Еще раз краткое решение в формулах:
ответ: 3/715
это Д) 9 см, так как 6*6=36, если площадь у обоих равна то 36=4*х х=36:4=9см-длина