По шоссе со скоростью 60км/ч едет колонна автомашин длинной 300м. проезжая мимо дпс машины сбрасывают скорость до 40 км/ч и далее следуют с этой скоростью. какова будет длина колонны, когда все машины проедут пост дпс?
Так как первоначальная скорость движения колонны равна 1000 м/мин, то "хвост" колонны окажется у поста ДПС через 0, 3 минуты после того, как мимо ДПС проедет "голова" колонны. За это время голова успеет проехать км/мин . 0, 3 мин = 0, 2 км = 200 м.
Сначала найдём производную: y*=(x^2(1-x)^2)*=(x^2)*(1-x)^2+x^2((1-x)^2)*=2x(1-x)^2+x^2*2(1-x)*(1-x)*=2x(1-2x+x^2)+x^2(2-2x)*(-1)=2x-4x^2+2x^3-2x^2+2x^3=4x^3-6x^2+2x Теперь то, что получилось (жирный шрифт) приравниваем к нулю и решаем: 4x^3-6x^2+2x=0 x(4x^2-6x+2)=0 x=0; 4x^2-6x+2=0 2x^2-3x+1=0 D=(-3)^2-4*2*1=1 x1=1 x2=0.5 Дальше строим ось X и отмечаем точки в порядке возрастания. Надеюсь вам знаком метод интервалов. в результате получается, что Xмин = 0 и 1, а Xмах=0,5 Теперь подставляем в исходное уравнение (y=x^2(1-x)^2) Yнаим=Y(0)=0^2(1-0)^2=0 Yнаиб=Y(0.5)=0.5^2(1-0.5)^2=0.25*0.25=0.0625 ответ: Yнаим=0; Yнаиб=0,0625
74 – 37 – 73 –47 Число 74 можно получить, указанными операциями, из числа 37 (умножением на 2) или из числа 47 (перестановкой цифр). Числа 37 и 47 нечётные, поэтому умножением на 2 их получить нельзя. Перестановкой цифр 37 можно получить из числа 73, а 47 из 74 (начальное число). 73 – нечётное число, поэтому его также можно получить только перестановкой цифр из числа 37 (тоже уже встречалось). Получается, что 74 применением указанных операций можно получить только из чисел 37, 47 и 73. Таким образом, из 1 нельзя получить 74.