4 + 4√3 см.
Пошаговое объяснение:
Начертим рисунок к задаче:
А - точка, отстоящая от плоскости на расстоянии 4 см,
АН - перпендикуляр из точки А на плоскость, его длина 4 см,
АВ - наклонная из точки А, образующая угол 30° с плоскостью,
АС - наклонная из точки А, образующая угол 45° с плоскостью,
угол между наклонными АВ и АС прямой.
Так как АН перпендикуляр, то треугольники АНВ и АНС прямоугольные.
В треугольнике АНС один из острых углов равен 45°, следовательно два его катета АН и НС равны между собой, таким образом НС = 4 см.
tg ABH = АН/HВ;
HB = AH/tg ABH = 4/tg 30° = 4/(1/√3) = 4√3 (см).
Расстояние между концами наклонных будет равно сумме отрезков ВН и НС:
ВС = ВН + НС = 4 + 4√3 (см).
ответ: 4 + 4√3 см.
Пошаговое объяснение:
Для построения графика прямой линии достаточно определить координаты двух точек.
Эти точки можно взять с определения точек пересечения с осями координат.
1)3х+у=6
х=0 у=(6-3х)/1=(6-3*0)/1=6/1=6
у=0 х=(6-1у)/3=(6-1*0)/3=6/3=2
Получили координаты точек А(0;6) и В(2;0).
Через эти точки проводится прямая, которая и является графиком уравнения 3х+у=6
2) -3х+2у=4
х = 0 у = (4+3х)/2 = (4+3*0)/2=4/2=2
у = 0 х =(4-2у)/-3=(4-2*0)/-3=4/-3=-1 1/3
Получили координаты точек А(0;2) и В(-1 1/3;0).
Через эти точки проводится прямая, которая и является графиком уравнения -3х+2у=4
и,т,д,
не верно каждая часть торта разделена на 1/4