Библиотека ашшурбанипала — крупнейшая сохранившаяся библиотека древнего мира и древнейшая из всех известных библиотек[1] . составлялась в течение 25 лет в ассирийской столице ниневии по приказу царя ашшурбанипала (vii в. до н. э.) служила также государственным архивом . после смерти царя фонды были рассеяны по различным дворцам. обнаруженная археологами часть библиотеки состоит из 25 000 глиняных табличек с клинописными текстами. открытие библиотеки в середине xix века имело огромное значение для понимания культур месопотамии и для дешифровки
Задачу можно решить двумя 1) посредством формул, аксиом и теорем планиметрии, изучаемых в стандартной школьной программе; 2) и через привлечение теоремы Менелая. Решим её обоими
[[[ 1 ]]] с п о с о б
Обозначим длины сторон треугольника как:
; ; и ;
Тогда: ;
Обозначим где – некоторое число,
такое, что: ;
Найдя это число мы найдём и пропорцию, в которой делит сторону ;
Проведём прямую тогда по трём углам:
а значит: и ;
и ;
[1] и ;
Поскольку то:
;
;
По трём углам: а значит:
и ;
Поскольку и по [1] то:
;
;
По теореме Фалеса, об отсечении параллельными прямыми внутри угла пропорциональных отрезков, получается, что:
;
Тогда получаем уравнение:
;
;
;
;
;
;
Значит и откуда ясно, что отношение, в котором точка делит сторону считая от точки будет:
;
[[[ 2 ]]] с п о с о б
Применим теорему Менелая
в треугольнике с секущей :
;
;
;
;
;
;
Отсюда: ;
;
Значит откуда ясно, что отношение, в котором точка делит сторону считая от точки будет:
3,4
Пошаговое объяснение:
-1,6+(-2,1)+(+3,9)=-1,6-2,1+3,9=3,4