М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
MashaFox25
MashaFox25
13.03.2021 06:13 •  Математика

((169,68: 5 3/5-22 4/5)*9 2/5+9,7)*22,5

👇
Ответ:
Angela8689
Angela8689
13.03.2021

((169,68:5 3/5-22 4/5)*9 2/5+9,7)*22,=

 Действие 1)169,68 / 5⅗=169,68 / 5,6=30,3   (предварительно 5⅗ мы перевели в десятичную                    дробь ,умножив ⅗ на 2)

2)30,3 - 22 4/5=30,3-22,8=7,5 (предварительно  4/5 мы перевели в десятичную дробь)

3)7,5 * 9⅖=7,5* 9,4=70,5 (предварительно ⅖ мы перевели в десятичную дробь)

4)70,5+9,7=80,2

5)80,2*22,5=1804,5

4,6(24 оценок)
Открыть все ответы
Ответ:
ответ: 132, 198, 264, 396.Решение:

Чтобы из числа можно было сделать все шесть различных двухзначных чисел, необходимо, чтобы исходное число было трехзначным и все цифры в нем были разные, представим это число в виде 100a+10b+c.

А сумма всех шести различных двухзначных чисел будет такая:

(10a+b)+(10b+a)+(10a+c)+(10c+a)+(10b+c)+(10c+b)=\\= 22a+22b+22c.

При этом (k натуральное):

(22a+22b+22c)=k(100a+10b+c).

Представим теперь, что k\geq 3, то есть:

22a+22b+22c \geq 3(100a+10b+c)\\22a+22b+22c \geq 300a+30b+3c\\278a+8b\leq 19c.

Но это противоречие, так как правая часть по-любому больше левой, а здесь она меньше. Поэтому k.

Итак, нужно рассмотреть два случая:

1).  k=2. Тогда:

22a+22b+22c=2(100a+10b+c)\\11a+11b+11c=100a+10b+c\\89a=b+10c.

Нетрудно понять, что в натуральных однозначных числах здесь всего одно решение: a=1, b=9, c=8.

А нужное число - это 198.

2). Случай посложнее: k=1.

22a+22b+22c=1(100a+10b+c)\\78a-12b-21c=0\\26a=4b+3c

Если a=1 уравнение принимает вид 26=4b+3c, и, тогда в вышеуказанных условиях у него такое одно решение: a=1, b=3, c=2. Число - 132.

Ну а теперь пусть a=2 и 52=4b+7c. Здесь методом подбора: a=2, b=6, c=4. А число - 264.

И последний случай a=3, то есть 78=4b+7c, где, подбором, a=3, b=9, c=6. Число 396.

Делаем вывод, что Вася богатый и у него в доме четыре (по крайней мере!) квартиры.

4,8(97 оценок)
Ответ:

1. (а + b)¹= а + b 2. (а + b)²= а²+ 2аb + b² 3. (а + b)³= а³ +3а²b + 3аb² + b³ Можно раскрыть скобки при вычислении (а +b) и т.д., умножая полученный.Содержание. 1) Понятие бинома Ньютона. 2) Свойства бинома и биномиальных коэффициентов. 3) Примеры решения задач по теме «Бином Ньютона». 4) Выход.Глава 9. Элементы математической статистики, комбинаторики и теории вероятностей §53. Формула бинома Ньютона.БИНОМ НЬЮТОНА. Определение. Двучлен вида a+b называют биномом.Автор : Ван – Хо – Син Виктория Петровна, 7А класс. МОУ СОШ7 г.Амурска. Бином Ньютона.11 класс МКОУ «Усть-Мосихинская СОШ» Новосёлова Е.А.N!n! Волошина Н.Н., Произведение биномов, отличающихся только вторыми членами. Выражение х + а, как и вообще всякий двучлен, называется.Бином Ньютона Бином bis дважды nomen часть Натуральную степень двучлена умели представлять в виде суммы степеней его слагаемых еще в 10 веке индийцы.Бином Ньютона Бином bis дважды nomen часть Натуральную степень двучлена умели представлять в виде суммы степеней его слагаемых еще в 10 веке индийцы.

4,8(15 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ