М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
veronik09
veronik09
26.03.2021 08:44 •  Математика

Запишите все целые числа от -5,1 до -1,5.​

👇
Ответ:
ewvyevs
ewvyevs
26.03.2021

Пошаговое объяснение:

ответ 5,1 - 1,5 = 3,6

4,7(76 оценок)
Ответ:
Ruda05
Ruda05
26.03.2021

4.0; 3.0; 2.0

Пошаговое объяснение:

4,6(56 оценок)
Открыть все ответы
Ответ:
egorbokof
egorbokof
26.03.2021

Пошаговое объяснение:

Монета брошена шесть раз.

В результате одного броска выпадет О или Р (Орел или Решка) с равной вероятностью 0,5.

Если записать результат 6 бросков, то получим цепочку, состоящую из 6 символов О или Р.

Например, исход - цепочка ООРОРО означает, что первый раз выпал Орел,

второй раз - Орел, третий раз - Решка и т.д..

Так как при каждом броске имеем 2 варианта (О или Р), а бросков 6,

то всего исходов (цепочек) имеем 26= 64. (В общем случае при n бросках имеем 2n исходов).

Пусть событие А = "Орел выпадет не менее трех раз" (3 или больше 3-х раз).

Противоположное событие (не А) = "Орел выпадет 1 раз, 2 раза или ни разу".

Подсчитаем количество исходов, при которых в цепочке

Орел будет встречаться 0, 1 или 2 раза.

- 1 исход (Орел не выпал ни разу)

Р, ОР, ООРООО, ОООРОО, РО, Р. 6 исходов  

С62 = 6!/(2!*4!) = 6*5/2=15 исходов, (

Всего благоприятных исходов (орел выпал более двух раз, т.е. не менее трех)

64 - (1+6+15) = 42.

Р = 42/64 = 0,65625

4,4(22 оценок)
Ответ:
345153
345153
26.03.2021
Прежде всего отметим, что число матчей, сыгранных с другими командами увеличивается от 0 до 19 и точно не больше 19.

Если предположить, что есть момент, когда все команды сыграли разное число матчей, то это возможно при единственном раскладе

1) есть только одна команда, которая не играла (0)
2) есть только одна команда, которая сыграла ровно одну игру (1)
3) есть только одна команда, которая сыграла ровно две игры (2)
.
.
.
20) есть только одна команда, которая сыграла ровно 19 игр (19)

Только так реализуются 20 различных чисел от 0 до 19. Получаем противоречие - последняя команда сыграла со всеми, но первая почему-то не играла ни с кем.

Значит предположение неверно, и поэтому в любой момент состязаний имеются две команды, сыгравшие к этому моменту одинаковое количество матчей
4,6(33 оценок)
Это интересно:
Новые ответы от MOGZ: Математика

MOGZ ответил

Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ