В решении.
Пошаговое объяснение:
Упростить выражения и найти их значения при данных значениях переменных:
1)3(a - 3b) - 5(а - 2b); при а = -1, 5, b = - 1
3(a - 3b) - 5(а - 2b)=
=3a-9b-5a+10b=
= -2a+b=
= -2(-1,5) + (-1)=
=3-1= 2;
2)4(a - b) + 2(3a - b); при а = -1, 5, b = -1
4(a - b) + 2(3a - b)=
=4a-4b+6a-2b=
=10a-6b=
=10*(-1,5)-6*(-1)=
= -15+6= -9;
3)0,4y - 0,6(y - 4) + 2(-1 + 0, 1у); при у = -0, 187
0,4y - 0,6(y - 4) + 2(-1 + 0, 1у)=
=0,4у-0,6у+2,4-2+0,2у= у взаимно уничтожается
= 2,4-2= 0,4;
4)2,3y - 1,7(у - 2) + 0,3(4 - 2y); при у = 0, 237
2,3y - 1,7(у - 2) + 0,3(4 - 2y)=
=2,3у-1,7у+3,4+1,2-0,6у= у взаимно уничтожается
=3,4+1,2= 4,6.
2). Пусть х саженцев растет на первой делянке, тогда х+19 саженцев растет на третьей делянке. По условию задачи на второй делянке растет 423-х саженца и всего растет 628 саженцев.
Составим уравнение:
х+х+19+(423-х)=628;
2х+(423-х)=628-19;
2х+(423-х)=609;
2х-х+423=609;
х+423=609;
х=609-423;
х=186.
3). На второй делянке 423-186=237 саженца.
4). На третьей делянке 186+19=205 саженцев.
ответ: 186; 237; 205.