Поезд отправился в 19.35.дорога пассажира от дома до вокзала занимает 45 мин.в котором часу пассажиру надо выехать из дома ,чтобы быть на вокзале за 15 мин. до отправления поезда?
Наибольшее ТРЕХЗНАЧНОЕ число 999, но выражение 327+999=1326, что не кратно 10. Кратные 10 числа оканчиваются на 0, т.е. сумма двух цифр разряда единиц в слагаемых должна быть равна 10. П первом слагаемом это 7, а во втором пусть будет А.(т.е. представим трехзначное число у как 99А, где А - цифра разряда единиц) тогда по условию: 7 + А= 10; А=10 - 7 = 3. И наше число 993 Проверка: 327 + 993 = 1320; 1320 : 10 = 132. Условие кратности выполнено. и число 993 - максимальное, так как при других значениях цифры А условие кратности не будет выполняться. Подробное решение: Пусть наше максимальное число у = 99А, где А - последняя его цифра. Разложим по разрядам: 99А = 900 + 90 + А . Условие кратности запишем как: 10*х, где х - число натурального ряда. По условию: 327 + (900 + 90 + А) = 10*х; ⇒ 1317 + А = 10*х; ⇒ А = 10*х -1317; Поскольку А - это цифра, то: 0 ≤ А ≤ 9; ⇒ 0 ≤10*х - 1317 ≤ 9; ⇒ 1317 ≤ 10*х ≤ 1326; 131,7 ≤ х ≤ 132, 6 Единственное целое число, удовлетворяющее этому условию, это число 132. ⇒ х = 132; Тогда А = 10*х - 1317 = 1320 - 1317 = 3, т.е. А = 3, и наше число 993 ответ: у = 993
Наибольшее ТРЕХЗНАЧНОЕ число 999, но выражение 327+999=1326, что не кратно 10. Кратные 10 числа оканчиваются на 0, т.е. сумма двух цифр разряда единиц в слагаемых должна быть равна 10. П первом слагаемом это 7, а во втором пусть будет А.(т.е. представим трехзначное число у как 99А, где А - цифра разряда единиц) тогда по условию: 7 + А= 10; А=10 - 7 = 3. И наше число 993 Проверка: 327 + 993 = 1320; 1320 : 10 = 132. Условие кратности выполнено. и число 993 - максимальное, так как при других значениях цифры А условие кратности не будет выполняться. Подробное решение: Пусть наше максимальное число у = 99А, где А - последняя его цифра. Разложим по разрядам: 99А = 900 + 90 + А . Условие кратности запишем как: 10*х, где х - число натурального ряда. По условию: 327 + (900 + 90 + А) = 10*х; ⇒ 1317 + А = 10*х; ⇒ А = 10*х -1317; Поскольку А - это цифра, то: 0 ≤ А ≤ 9; ⇒ 0 ≤10*х - 1317 ≤ 9; ⇒ 1317 ≤ 10*х ≤ 1326; 131,7 ≤ х ≤ 132, 6 Единственное целое число, удовлетворяющее этому условию, это число 132. ⇒ х = 132; Тогда А = 10*х - 1317 = 1320 - 1317 = 3, т.е. А = 3, и наше число 993 ответ: у = 993
19ч35мин-45мин=18ч50мин
18ч50мин-15мин=18ч35мин