Классам "Математики", "Черчения" и "Русского языка" раздали новые учебники, класс математики получил 4 учебника по 208 страниц в каждом, класс Черчения получил тоже 4 учебника, но уже по 216 страниц в каждом, а класс Русского получил 6 учебников по 152 страницы в каждом.Сколько всего страниц во всех учебниках полученных каждым классом.
Решение
1) 4 х 208 = 832 (стр.) - Во всех учебниках в классе "Математики"
2) 4 х 216 = 864 (стр.) - Во всех учебниках в классе "Черчения"
3) 6 х 152 = 912 (стр.) - Во всех учебниках в классе "Русского языка"
ответ : 832 страницы; 864 страницы; 912 страниц.
#7
Задача 2:
Миша решил пойти в школу сдать в библиотеку книги, по пути в школу он зашёл в магазин, пройдя при этом от дома до магазина 142м, а от магазина до школы ему нужно было пройти в два раза больше чем от дома до магазина.Найдите расстояние от Мишеного дома до школы.
Пример №1. Дана функция z=z(x,y), точка A(x0,y0) и вектор a. Найти: 1) grad z в точке А; 2) производную данной функции в точке А в направлении вектора a.Решение. z = 5*x^2*y+3*x*y^2 Градиентом функции z = f(x,y) называется вектор, координатами которого являются частные производные данной функции, т.е.:
Находим частные производные:
Тогда величина градиента равна:
Найдем градиент в точке А(1;1)
или
Модуль grad(z):
Направление вектора-градиента задаётся его направляющими косинусами:
Найдем производную в точке А по направлению вектора а(6;-8).
Найти направление вектора - значит найти его направляющие косинусы:
Модуль вектора |a| равен:
тогда направляющие косинусы:
Для вектора a имеем:
Если ∂z/∂a > 0, то заданная функция в направлении вектора a возрастает. Если ∂z/∂a < 0, то заданная функция в направлении вектора a убывает.Пример №2. Даны z=f(x; y), А(х0, у0). Найти а) градиент функции z=f(x; y) в точке А. б) производную в точке А по направлению вектора а.Пример №3. Найти полный дифференциал функции, градиент и производную вдоль вектора l(1;2). z = ln(sqrt(x^2+y^2))+2^xРешение. Градиентом функции z = f(x,y) называется вектор, координатами которого являются частные производные данной функции, т.е.:
Находим частные производные:
Тогда величина градиента равна:
Найдем производную в точке А по направлению вектора а(1;2).
Найти направление вектора - значит найти его направляющие косинусы:
Модуль вектора |a| равен:
тогда направляющие косинусы:
Для вектора a имеем:
Если ∂z/∂a > 0, то заданная функция в направлении вектора a возрастает. Если ∂z/∂a < 0, то заданная функция в направлении вектора a убывает.Пример №4. Дана функция . Найти: 1) gradu в точке A(5; 3; 0); 2) производную в точке А в направлении вектора . Решение. 1. . Найдем частные производные функции u в точке А. ;; , . Тогда 2. Производную по направлению вектора в точке А находим по формуле . Частные производные в точке А нами уже найдены. Для того чтобы найти , найдем единичный вектор вектора . , где . Отсюда .Пример №5. Даны функция z=f(x), точка А(х0, у0) и вектор a. Найти: 1) grad z в точке А; 2) производную в точке А по направлению вектора a. Решение. Находим частные производные:
Тогда величина градиента равна:
Найдем градиент в точке А(1;1)
или
Модуль grad(z):
Направление вектора-градиента задаётся его направляющими косинусами:
Найдем производную в точке А по направлению вектора а(2;-5).
Найти направление вектора - значит найти его направляющие косинусы:
Модуль вектора |a| равен:
тогда направляющие косинусы:
Для вектора a имеем:
Поскольку ∂z/∂a < 0, то заданная функция в направлении вектора a убывает.
Пример №1. Дана функция z=z(x,y), точка A(x0,y0) и вектор a. Найти: 1) grad z в точке А; 2) производную данной функции в точке А в направлении вектора a.Решение. z = 5*x^2*y+3*x*y^2 Градиентом функции z = f(x,y) называется вектор, координатами которого являются частные производные данной функции, т.е.:
Находим частные производные:
Тогда величина градиента равна:
Найдем градиент в точке А(1;1)
или
Модуль grad(z):
Направление вектора-градиента задаётся его направляющими косинусами:
Найдем производную в точке А по направлению вектора а(6;-8).
Найти направление вектора - значит найти его направляющие косинусы:
Модуль вектора |a| равен:
тогда направляющие косинусы:
Для вектора a имеем:
Если ∂z/∂a > 0, то заданная функция в направлении вектора a возрастает. Если ∂z/∂a < 0, то заданная функция в направлении вектора a убывает.Пример №2. Даны z=f(x; y), А(х0, у0). Найти а) градиент функции z=f(x; y) в точке А. б) производную в точке А по направлению вектора а.Пример №3. Найти полный дифференциал функции, градиент и производную вдоль вектора l(1;2). z = ln(sqrt(x^2+y^2))+2^xРешение. Градиентом функции z = f(x,y) называется вектор, координатами которого являются частные производные данной функции, т.е.:
Находим частные производные:
Тогда величина градиента равна:
Найдем производную в точке А по направлению вектора а(1;2).
Найти направление вектора - значит найти его направляющие косинусы:
Модуль вектора |a| равен:
тогда направляющие косинусы:
Для вектора a имеем:
Если ∂z/∂a > 0, то заданная функция в направлении вектора a возрастает. Если ∂z/∂a < 0, то заданная функция в направлении вектора a убывает.Пример №4. Дана функция . Найти: 1) gradu в точке A(5; 3; 0); 2) производную в точке А в направлении вектора . Решение. 1. . Найдем частные производные функции u в точке А. ;; , . Тогда 2. Производную по направлению вектора в точке А находим по формуле . Частные производные в точке А нами уже найдены. Для того чтобы найти , найдем единичный вектор вектора . , где . Отсюда .Пример №5. Даны функция z=f(x), точка А(х0, у0) и вектор a. Найти: 1) grad z в точке А; 2) производную в точке А по направлению вектора a. Решение. Находим частные производные:
Тогда величина градиента равна:
Найдем градиент в точке А(1;1)
или
Модуль grad(z):
Направление вектора-градиента задаётся его направляющими косинусами:
Найдем производную в точке А по направлению вектора а(2;-5).
Найти направление вектора - значит найти его направляющие косинусы:
Модуль вектора |a| равен:
тогда направляющие косинусы:
Для вектора a имеем:
Поскольку ∂z/∂a < 0, то заданная функция в направлении вектора a убывает.
#4
Задача 1:
Классам "Математики", "Черчения" и "Русского языка" раздали новые учебники, класс математики получил 4 учебника по 208 страниц в каждом, класс Черчения получил тоже 4 учебника, но уже по 216 страниц в каждом, а класс Русского получил 6 учебников по 152 страницы в каждом.Сколько всего страниц во всех учебниках полученных каждым классом.
Решение
1) 4 х 208 = 832 (стр.) - Во всех учебниках в классе "Математики"
2) 4 х 216 = 864 (стр.) - Во всех учебниках в классе "Черчения"
3) 6 х 152 = 912 (стр.) - Во всех учебниках в классе "Русского языка"
ответ : 832 страницы; 864 страницы; 912 страниц.
#7
Задача 2:
Миша решил пойти в школу сдать в библиотеку книги, по пути в школу он зашёл в магазин, пройдя при этом от дома до магазина 142м, а от магазина до школы ему нужно было пройти в два раза больше чем от дома до магазина.Найдите расстояние от Мишеного дома до школы.
(142х2)+142 = 426 (м.) - Миша от дома до школы
ответ : 426 м