Пошаговое объяснение:1) f(x)= 2x²-3x+1 , [-1;1] ⇒ f'(x)= 4x-3, найдём критические точки: 4х-3=0, ⇒ х = 3/4=0,75 ∈[-1;1]. Найдём значения функции в критической точке и на концах данного промежутка: f(3/4)= 2·(3/4)²- 3·3/4 +1 =9/8 -9/4 + 1 = -1/8 ; f(1) = 0; f(-1)=6 ⇒ max f(x)=f(-1)=6; minf(x)=f(3/4)=-1/8
2)f(x)=3x²-4 на [2;4] ⇒ f'(x)=6x 6x=0, x=0-крит. точка, но x=0∉ [2;4] ⇒ Найдём значения функции на концах данного промежутка: f(2)= 3·2²-4= 12-4=8 f(4)=3·4² - 4= 48-4=44 ⇒ max f(x)=f(-4)=44; minf(x)=f(2)=8 3)f(x)=x²-1 на [0;3]⇒ f'(x)=2x , 2x=0 x=0 -критическая точка х=0 ∈ [0;3]. Найдём значения функции в критической точке и на концах данного промежутка: f(0) =0²-1=-1; f(3)=3²-1=8 ⇒max f(x)=f(3)=8; minf(x)=f(0)= -1
1.Гоняют по кольцу. Длинна кольца 350 км. Старт и финиш в одной точке. Длинна этапа эстафеты - 75 км. Что ищем: наименьшее количество этапов. 2. А может 350 км разделится на 75 км, так что бы получилось число без остатка (что бы старт и финиш совпали) . Проверяем: 350:75=4,666... Нет не получилось. Тогда следующая точка совпадения будет - 2 круга, а это? 3. Два круга = 2 х 350км = 700 км. Может теперь разделится без остатка? Проверяем: 700:75=9,333... Нет, опять не получилось. Тогда следующая точка совпадения будет - 3 круга, а это? 4. Три круга = 3 х 350км = 1050 км. Снова ищем ровное число этапов. Проверяем: 1050:75=14. Свершилось! Ура!! ! ответ: наименьшее количество этапов 14(четырнадцать) , обоснованием ответа является решение-рассуждение.