ответ: x(t)=e^t*(C1+C2+1/2*C2*t), y(t)=e^t*(C1+C2*t).
Пошаговое объяснение:
Из второго уравнения находим x=1/2*y'+1/2*y. Дифференцируя по t, получаем x'=1/2*y"+1/2*y'. Подставляя найденные выражения для x и x' в первое уравнение, приходим к уравнению y"-2*y'+y=0. Его характеристическое уравнение k²-2*k+1=0 имеет решения k1=k2=0. Так как корни уравнения равные, то данное дифференциальное уравнение имеет решение y(t)=C1*e^t+C2*t*e^t=e^t*(C1+C2*t). Отсюда y'=C1*e^t+C2*e^t+C2*t*e^t. Подставляя выражения для y и y' в равенство x=1/2*y'+1/2*y, находим x(t)=e^t*(C1+C2+1/2*C2*t).
2. для q(x) также берем производную от F(x)=5x^4+4x^3-3x^2 F'(x)=20x^3+12x^2-6x=2x(10x^2+6x-3)
3. a) f(x)=6x^2+10x^4-3 берем интеграл неопределенный (S - интеграл)
F(x)= S (6x^2+10x^4-3)dx=6 x^3/3 +10 x^5 /5 -3x +const=2x^3+2x^5-3x+const
б) f(x)=9-8x+x^5 F(x) =S (9-8x+x^5)dx =9x - 4x^2+x^6 /6 +const
в) f(x)=x^2+x-1 F(x) =S( x^2+x-1)dx =x^3 /3 +x^2 /2 -x +const
4. найдем все первообразные функции f(x) => S(3x^2-2x+1)dx =x^3 -x^2+x +const
теперь найдем константу const => в полученное уравнение F(x)= x^3 -x^2+x +const подставим x= -1 y= 2 => 2=-1 -1 -1 +const => const =5
Искомая первообразная F(x) =x^3 -x^2+x +5